Skip to main content

Dose Finding in Oncology—Parametric Methods

  • Chapter
Dose Finding in Drug Development

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

The primary goal of a cancer Phase I clinical trial is to determine the dose of a new drug or combination of drugs for subsequent use in Phase II trials to evaluate its efficacy. The dose sought is typically referred to as the maximally tolerated dose (MTD) and its definition depends on the treatment under investigation, the severity and reversibility of its side effects, and on clinical attributes of the target patient population. Since it is generally assumed that toxicity is a prerequisite for optimal antitumor activity (see Wooley and Schein, 1979), the MTD of a cytotoxic agent typically corresponds to the highest dose associated with a tolerable level of toxicity. More precisely, the MTD γ is defined as the dose expected to produce some degree of medically unacceptable, dose limiting toxicity (DLT) in a specified proportion θ of patients (see Gatsonis and Greenhouse, 1992). Hence, we have

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babb, J.S., and Rogatko, A. 2001. Patient specific dosing in a cancer Phase I clinical trial. Statistics in Medicine 20:2079–2090.

    Article  PubMed  CAS  Google Scholar 

  • Babb, J.S., Rogatko, A., and Zacks, S. 1998. Cancer Phase I clinical Trials: efficient dose escalation with overdose control. Statistics in Medicine 17:1103–1120.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Langer, C., Aamdal, S., Robert, F., Engelhardt, L.R., Fernberg, O., Schiller, J. et al. (2004). Individualized patient dosing in Phase I clinical trials: The role of EWOC in PNU-214936. Journal of Clinical Oncology 22:602–609.

    Article  PubMed  CAS  Google Scholar 

  • Decoster, G., Stein, G., and Holdener, E.E. 1989. “Responses and toxic deathsin Phase I clinical trials,” in Sixth NCI-EORTC Symposium on New Drugs in Cancer Therapy, Amsterdam, pp. 175–181.

    Google Scholar 

  • Durham, S.D., and Flournoy, N. 1994. “Random walks for quantile estimation,” in Statistical Design Theory and Related Topics V (Gupta, S.S., and Berger, J.O., editors), New York: Springer, pp. 467–476.

    Google Scholar 

  • Eichhorn, B.H., and Zacks, S. 1973. Sequential search of an optimal dosage, I.Journal of the American Statistical Association 68:594–598.

    Article  Google Scholar 

  • Gasparini, M., and Eisele, J. 2000. A curve-free method for Phase I clinical trials. Biometrics 56:609–615.

    Article  PubMed  CAS  Google Scholar 

  • Gatsonis, C., and Greenhouse J.B. 1992. Bayesian methods for Phase I clinical trials. Statistics in Medicine 11:1377–1389.

    Article  PubMed  CAS  Google Scholar 

  • Grieve, A.P. 1987. A Bayesian approach to the analysis of LD50 experiments. Technical Report 8707, CIBA-GEIGY AG, 1987.

    Google Scholar 

  • Hudes, G., Schol, J., Babb, J., Rogatko, A., Bol, C., Horak, I., Langer, C., Goldstein, L. J., Szarka, C., Meropol, N. J., and Weiner, L. 1999. Phase I clinical and pharmacokinetic trial of the Farnesyltransferace inhibitor R115777 on a 21-day dosing schedule (meeting abstract). American Society of Clinical Oncology, 1999.

    Google Scholar 

  • Haines, L.M., Perevozskaya, I., and Rosenberger, W.F. 2003. Bayesian optimal designs for Phase I clinical trials. Biometrics 59:591–600.

    Article  PubMed  Google Scholar 

  • Hastings, W.K. 1970. Monte Carlo Sampling Methods using Markov Chains and their Applications. Biometrika 57:97–109.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics 21:1087–1092.

    Article  CAS  Google Scholar 

  • O’Quigley, J., Pepe, M., and Fisher, L. 1990. Continual reassessment method: A practical design for Phase 1 clinical trials in cancer. Biometrics 46:33–48.

    Article  PubMed  CAS  Google Scholar 

  • Racine, A., Grieve, A.P., Fluhler, H., and Smith, A.F.M. 1986. Bayesian methods in practice: Experiences in the pharmaceutical industry. Applied Statistics 35:93–150.

    Article  Google Scholar 

  • Ratain, M.J., Mick, R., Schilsky, R.L., and Siegler, M. 1993. Statistical and ethical issues in the design and conduct of Phase I and II clinical trials of new anticancer agents. Journal of the National Cancer Institute 85:1637–1643.

    Article  PubMed  CAS  Google Scholar 

  • Rogatko, A., Tighiouart, M., and Xu, Z. 2005. EWOC User’s Guide Version 2.0. Winship Cancer Institute, Emory University, Atlanta, GA. http://www.sph.emory.edu/ BRI-WCI/ewoc.html

    Google Scholar 

  • Rosenberger, W.F., and Haines, L.M. 2002. Competing designs for Phase I clinical trials: A review. Statistics in Medicine 21:2757–2770.

    Article  PubMed  Google Scholar 

  • Spiegelhalter, D.J., Thomas, A., and Best, N.G. 1999. WinBUGS Version 1.2 User Manual. MRC Biostatistics Unit.

    Google Scholar 

  • Storer, B.E. 1989. Designs and analysis of Phase I clinical trials. Biometrics 45:925–937.

    Article  PubMed  CAS  Google Scholar 

  • Tighiouart, M., Rogatko, A., and Babb, J.S. 2005. Flexible Bayesian Methods for Cancer Phase I Clinical Trials: Dose escalation with overdose control. Statistics in Medicine 24:2183–2196.

    Article  PubMed  Google Scholar 

  • Tsutakawa, R.K. 1972. Design of experiment for bioassay. Journal of the American Statistical Association 67:584–590.

    Article  Google Scholar 

  • Tsutakawa, R.K. 1980. Selection of dose levels for estimating a percentage point on a logistic quantal response curve. Applied Statistics 29:25–33.

    Article  Google Scholar 

  • Whitehead, J., and Brunier, H. 1995. Bayesian decision procedures for dose determiningexperiments. Statistics in Medicine 14:885–893.

    Article  PubMed  CAS  Google Scholar 

  • Wooley, P.V., and Schein, P.S. 1979. Methods of Cancer Research, New York: Academic Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Tighiouart, M., Rogatko, A. (2006). Dose Finding in Oncology—Parametric Methods. In: Ting, N. (eds) Dose Finding in Drug Development. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-33706-7_5

Download citation

Publish with us

Policies and ethics