Skip to main content

NEAR INFRARED IMAGING AND SPECTROSCOPY FOR BRAIN ACTIVITY MONITORING

  • Conference paper
Advances in Sensing with Security Applications

Part of the book series: NATO Security Through Science Series ((NASTA,volume 2))

Abstract

The first demonstration that near infrared (NIR) light can be used to monitor the state of cortical tissues noninvasively through the skull was presented by Jobsis in 1977 [53]. About a decade later, researchers started looking at the potential use of NIR spectroscopy for functional brain activity monitoring. Early studies began with simple motor and sensory tasks demonstrating the feasibility of the technology for noninvasively assessing the state of cerebral activity in a localized area. More recent studies have attempted to monitor more complex cognitive tasks such as warfare management [48] and aircraft landing simulations [102]. In this chapter, the research surrounding the application of NIR imaging and spectroscopy to noninvasive monitoring of functional brain activity is reviewed. A comprehensive review of equipment technologies, mathematical models, and past studies is given with some emphasis on the technology’s potential in security and defense applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. D. Adelson, E. Nemoto, M. Scheuer, M. Painter, J. Morgan, and H. Yonas. Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report. Epilepsia, 17:89–99, 2002.

    Google Scholar 

  2. J. R Anderson and C. Lebiere. The Atomic Components of Thought. Lawrence Erlbaum Associates, 1998

    Google Scholar 

  3. S. R. Arridge. Photon measurement density functions. part 1: Analytical forms. Applied Optics, 34:7395–7409, 1995.

    Google Scholar 

  4. S. R. Arridge. Optical tomography in medical imaging. Inverse Problems, 15:R41–R93, 1999.

    Article  Google Scholar 

  5. M. Bartocci, J. Winberg, G. Papendieck, T. Mustica, G. Serra, and H. Lagercrantz. Activation of olfactory cortex in newborn infants after odour stimulation. Pediatric Research, 50:324–330, 2001

    Google Scholar 

  6. M. Bartocci, J.Winberg, C. Ruggiero, L. Begqvist, G. Serra, and H. Lagercrantz. Activation of olfactory cortex in newborn infants after odour stimulation. Pediatric Research, 48:18–23, 2000.

    Google Scholar 

  7. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang. Imaging the body with di.use optical tomography. IEEE Signal Processing Magazine, 18(6):57–75, 2001.

    Article  Google Scholar 

  8. D. A. Boas, A. M. Dale, and M. A. Franceschini. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage, 23:S275–S288, 2004.

    Article  Google Scholar 

  9. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. NeuroImage, 13:76–90, 2001.

    Article  Google Scholar 

  10. R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss. Model for photon migration in turbid biological media. Journal of the Optical Society of America A, 4(3):423–432, 1987.

    Google Scholar 

  11. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas. A novel method for fast imaging of brain function, non-invasively, with light. Optical Express, 2(10):411–423, 1998.

    Google Scholar 

  12. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfield, M. Finander, K. Kaufman, W. Lery, M. Yong, P. Cohn, H. Yoshioka, and R. Boretsky. Comparison of time-resolved and unresolved measurement of deoxy hemoglobin in brain. In Proceedings of National Academy of Science, pages 4971–4975, 1988

    Google Scholar 

  13. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal. Biochem., 174:698–707, 1988.

    Article  Google Scholar 

  14. L. B. Cohen. Changes in neuron structure during action potential propagation and synaptic transmission. Physiological Review, 53:373–413, 1973.

    Google Scholar 

  15. W. N. Colier, V. Quaresima, B. Oeseburg, and M. Ferrari. Human motorcortex oxygenation changes induced by cyclic coupled movements of hand and foot. Experimental Brain Research, 129:457–461, 1999.

    Article  Google Scholar 

  16. M. Cope. The development of a near-infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the newborn infant. PhD thesis, University College London, London, 1991.

    Google Scholar 

  17. M. Cope and D.T. Delpy. System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infra-red transillumination. Medical and Biological Engineering and Computing, 28:289–294, 1988.

    Google Scholar 

  18. S. Coyle, T. Ward, C. Markham, and G. McDarby. On the suitability of nearinfrared (nir) systems for next-generation brain-computer interfaces. Physiological Measurement, 25:815–822, 2004.

    Article  Google Scholar 

  19. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt. Estimation of optical path length through tissue from direct time of flight measurements. Physics in Medicine and Biology, 33:1433–1442, 2004.

    Google Scholar 

  20. A. Devaraj, M. Izzetoglu, K. Izzetoglu, S. C. Bunce, C. Y. Li, and B. Onaral. Motion artifact removal in FNIR spectroscopy for real-world applications. In Nondestructive Sensing for Food Safety, Quality, and Natural Resources. Edited by Chen, Yud-Ren; Tu, Shu-I. Proceedings of the SPIE, Volume 5588, pp. 224– 229 (2004)., pages 224–229, October 2004.

    Google Scholar 

  21. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy. Optical path length measurements on adult head, calf and forearm and the head of newborn infants using phase resolved spectroscopy. Physics in Medicine and Biology, 40:295–304, 1995.

    Article  Google Scholar 

  22. C. E. Elwell, H. Owen-Reece, J. S. Wyatt, M. Cope, E. O. Reynolds, and D. T. Delpy. Influence of respiration and changes in expiratory pressure on cerebral hemoglobin concentration measured by near infrared spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 16:353–357, 1996.

    Google Scholar 

  23. C. E. Elwell, R. Springett, E. Hillman, and D. T. Delpy. Oscillations in cerebral hemodynamics. implications for functional activation studies. Advances in Experimental and Medical Biology, 471:57–65, 1999.

    Google Scholar 

  24. M. Essenpreis, C. E. Elwell, M. Cope, and D. T. Delpy. Spectral dependence of temporal point spread functions in human tissues. Applied Optics, 32:418–425, 1993.

    Google Scholar 

  25. M. Firbank, E. Okada, and D. T. Delpy. A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. NeuroImage, 8:69–78, 1998.

    Article  Google Scholar 

  26. M. A. Franceschini and D. A. Boas. Noninvasive measurement of neuronal activity with near-infrared optical imaging. NeuroImage, 21:372–386, 2004.

    Article  Google Scholar 

  27. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas. Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging. Psychophysiology, 40:548–560, 2003.

    Article  Google Scholar 

  28. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini. Online optical imaging of the human brain with 160-ms temporal resolution. Optics Express, 6(3):49–57, 2000.

    Google Scholar 

  29. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proceedings of National Academy of Science USA, 87:6082–6086, 1990.

    Google Scholar 

  30. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani. Measurements of scattering and absorption changes in muscle and brain. Philosophical Transactions Royal Society of London, 352:727–735, 1997.

    Google Scholar 

  31. E. Gratton, W. W. Mantulin, M. J. vandeVen, J. B. Fishkin, M. B. Maris, and B. Chance. The possibility of a near-infrared optical imaging system using frequency-domain methods. In Proceedings of of 3rd International Conference on Peace through Mind/Brain Science, pages 183–189, 1990.

    Google Scholar 

  32. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb. Measurement of brain activity by near-infrared light. Journal of Biological Optics, 10(1):011008-1- 011008-13, 2005.

    Google Scholar 

  33. G. Gratton, P. M. Corbaliis, E. Cho, M. Fabiani, and D. Hood. Shades of grey matter: non-invasive optical images of human brain responses during visual stimulation. Psychophysiology, 32:505–509, 1995.

    Google Scholar 

  34. G. Gratton and P. M. Corballis. Removing the heart from the brain: Compensation for the pulsatile artifact in the photon migration signal. Psychophysiology, 32:292–299, 1995.

    Google Scholar 

  35. G. Gratton and M. Fabiani. The event-related optical signal: a new tool for studying brain function. International Journal of Psychophysiology, 42:109–121, 2001.

    Article  Google Scholar 

  36. G. Gratton and M. Fabiani. Shedding light on brain function: the event-related optical signal. Trends in Cognitive Sciences, 5(8):357–363, 2001.

    Article  Google Scholar 

  37. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, and E. Gratton. Photon migration correlates of rapid physiological changes in the brain during a tapping task. Journal of Cognitive Neuroscience, 7:446–456, 1995.

    Google Scholar 

  38. G. Gratton, A. Sarno, E. Maclin, P. M. Corballis, and M. Fabiani. Toward noninvasive 3-d imaging of the time course of cortical activity: Investigation of the depth of the event-related optical signal. NeuroImage, 11:491–504, 2000.

    Article  Google Scholar 

  39. H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. v. Pannwitz, S. Matcher, U. Dirnagl, C. E. Cooper, and A. Villranger. Noninvasive assessment of changes in cytochrom-c-oxidase oxidation in human subjects during visual stimulation. Journal of Cerebral Blood Flow and Metabolism, 19:592–603, 1999.

    Google Scholar 

  40. H. R. Heekeren, H. Obrig, R. Wenzel, K. Eberle, J. Ruben, K. Villringer, R. Kurth, and A. Villringer. Cerebral haemoglobin oxygenation during sustained visual stimulation - a near-infrared spectroscopy study. Philosophical Transactions: Biological Sciences, 352:743-750, 1997.

    Google Scholar 

  41. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy. A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Physics in Medicine and Biology, 38:1859–1876, 1993.

    Article  Google Scholar 

  42. C. Hirth, H. Obrig, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickel, H. Flor, U. Dirnagl, and A. Villringer. Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. NeuroReport, 7:1977– 1981, 1996.

    Google Scholar 

  43. C. Hock, K. Villringer, F. Muller-Spahn, R. Wenzel, H. Heekeren, S. Schuh- Hofer, M. Hofmann, S. Minoshima, M. Schwaiger, U. Dirnagl, and A. Villringer. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with alzheimer's disease monitored by means of near-infrared spectroscopy (nirs) - correlation with simultaneous rcbf-pet measurements. Brain Research, 755:293-303, 1997.

    Article  Google Scholar 

  44. Y. Hoshi. Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology, 40:511–520, 2003.

    Article  Google Scholar 

  45. Y. Hoshi, S.-J. Chen, and M. Tamura. Spatiotemporal imaging of human brain activity by functional near-infrared spectroscopy. American Laboratory, pages 35–39, 2001.

    Google Scholar 

  46. Y. Hoshi and M. Tamura. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neuroscience Letters, 150:5–8, 1993.

    Article  Google Scholar 

  47. Y. Hoshi and M. Tamura. Fluctuations in the cerebral oxygenation state during the resting period in functional mapping studies of the human brain. Medical and Biological Engineering and Computing, 35:328–330, 1997.

    Google Scholar 

  48. K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei. fnir spectroscopy as a measure of cognitive task load. In Proceedings of the 25th Annual International Conference of the IEEE EMBS, pages 3431–3434, 2003.

    Google Scholar 

  49. K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei. Functional near-infrared neuroimaging. In Proceedings of the 26th Annual International Conference of the IEEE EMBS, pages 5333–5336, 2004.

    Google Scholar 

  50. K. Izzetoglu, G. Yurtsever, A. Bozkurt, and S. Bunce. Functional brain monitoring via nir based optical spectroscopy. In Bioengineering Conference, 2003 IEEE 29th Annual, Proceedings of, pages 335–336, 2003.

    Google Scholar 

  51. K. Izzetoglu, G. Yurtsever, A. Bozkurt, B. Yazici, and S. Bunce. Nir spectroscopy measurements of cognitive load elicited by gkt and target categorization. In Proceedings of 36th Hawaii International Conference on System Sciences. IEEE, 2002.

    Google Scholar 

  52. G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy. NeuroImage, 20:479–488, 2003.

    Article  Google Scholar 

  53. F. F. Jobsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198:1264–1267, 1977.

    Google Scholar 

  54. O. Josephs, R. Turner, and K. Friston. Event related fmri. Human Brain Mapping, 5:243–248, 1997.

    Article  Google Scholar 

  55. R. Kennan, D. Kim, A. Maki, H. Koizumi, and R. T. Constable. Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional mri. Human Brain Mapping, 16:183–189, 2002.

    Article  Google Scholar 

  56. A. Kleinschmidt, H. Obrig, M. Requardt, K. D. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm. Simultaneous recording of cerebral oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. Journal of Cerebral Blood Flow and Matabolism, 16:817–826, 1996.

    Google Scholar 

  57. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer. Changes in cytochrome-oxidase oxidation in the occipital cortex during visual stimulation: Improvement in sensitivity by the determination of the wavelength dependence of the di.erential pathlength factor. In Proceedings of SPIE, volume 3194, pages 18–27, 1998.

    Google Scholar 

  58. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer. Determination of the wavelength dependence of the di.erential pathlength factor from near-infrared pulse signals. Physics in Medicine and Biology, 43:1771–1782, 1998.

    Article  Google Scholar 

  59. M. H. Kutner, C. J. Nachtsheim, and J. Neter. Applied Linear Regression Models. McGraw-Hill Irwin, 4 edition, 2004.

    Google Scholar 

  60. D. D. Langleben, L. Schroeder, J. A. Maldjian, R. C. Gur, S. McDonald, J. D. Ragland, C. P. O’Brien, and A. R. Childress. Brain activity during simulated deception: An event-related functional magnetic resonance study. NeurImage, 15:727–732, 2002.

    Google Scholar 

  61. H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, and B. Chance. Characterization of small-volume biological sample using time-resolved spectroscopy. Anal. Biochem., 213:378–385, 1993.

    Article  Google Scholar 

  62. E. L. Maclin, K. A. Low, J. J. Sable, M. Fabiani, and G. Gratton. The eventrelated optical signal to electrical stimulation of the median nerve. NeuroImage, 21:1798–1804, 2004.

    Article  Google Scholar 

  63. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements. Applied Optics, 31:3509–3517, 1992.

    Google Scholar 

  64. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi. Spatial and temporal analysis of human motor activity using noninvasive nir topography. Journal of Neurosicence, 11:1458–1469, 1995.

    Google Scholar 

  65. A. Maki, Y. Yamashita, E. Watanabe, and H. Koizumi. Visualizing human motor activity by using non-invasive optical topography. Front Med Biol Eng, 7:285–297, 1996.

    Google Scholar 

  66. D. Malonek and A. Grinvald. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: Implications for functional brain mapping. Science, 272:551-554, 1996.

    Google Scholar 

  67. J. Meek. Basic principles of optical imaging and application to the study of infant development. Developmental Science, 5(3):371–380, 2002.

    Article  Google Scholar 

  68. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. D. Wyatt, D. T. Delpy, and S. Zeki. Regional changes in cerebral hemodynamics as a result of a visual stimulus measured by near infrared spectroscopy. Proceedings of Royal Society of London, 261:351–356, 1995.

    Google Scholar 

  69. J. H. Meek, M. Firbank, C. E. Elwell, J. Atkinson, O. Braddick, and J. S. Wyatt. Regional hemodynamic responses to visual stimulation in awake infants. Pediatric Research, 43:840–843, 1998.

    Google Scholar 

  70. J. H. Meek, L. Tyszczuk, C. E. Elwell, and J. S. Wyatt. Cerebral blood flow increases over the first three days of life in extremely preterm neonates. Archives of Disease in Childhood, 78:F33–F37, 1998.

    Google Scholar 

  71. J. H. Meek, L. Tyszczuk, C. E. Elwell, and J. S. Wyatt. Low cerebral blood flow is a risk factor for sever intraventricular hemorrhage. Archives of Disease in Childhood, 81:F15–F18, 1999.

    Google Scholar 

  72. D. J. Mehagnoul-Schipper, B. F. van der Kallen, W. N. Colier, M. C. van der Sluijs, L. J. van Erning, H. O. Thijssen, B. Oeseburg, W. H. Hoefnagels, and R. W. Jansen. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Human Brain Mapping, 16:14–23, 2002.

    Article  Google Scholar 

  73. M. Miwa, Y. Ueda, and B. Chance. Development of time-resolved spectroscopy system for quantitative non-invasive tissue measurement. SPIE, 2389:142–149, 1995.

    Google Scholar 

  74. I.Miyai, H. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota. Cortical mapping of gait in humans: A nearinfrared spectroscopic topography study. NeuroImage, 14:1186–1192, 2001.

    Article  Google Scholar 

  75. Y. Noguchi, T. Takeuchi, and K. Sakai. Lateralized activation in the inferior frontal cortex during syntactic processing: event-related optical topography study. Human Brain Mapping, 17:89–99, 2002.

    Article  Google Scholar 

  76. Y. Nomura and M. Tamura. Quantitative analysis of hemoglobin oxygenation state of rat brain in vivo by picosecond time-resolved spectrophotometry. Journal of Biochemistry, 109:455–461, 1991.

    Google Scholar 

  77. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl, and A. Villringer. Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. NeuroImage, 12:623–639, 2000.

    Article  Google Scholar 

  78. H. Obrig and A. Villringer. Beyond the visible-imaging the human brain with light. Journal of Cerebral Blood Flow and Metabolism, 23:1–18, 2003.

    Google Scholar 

  79. H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer. Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? International Journal of Psychophysiology, 35:125–142, 2000.

    Article  Google Scholar 

  80. M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura. Quantitation of absolute concentration change in scattering media by the time-resolved microscopic beerlambert law. Advances in Experimental and Medical Biology, 345:861–870, 1992.

    Google Scholar 

  81. M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura. Determination of absolute concentration of oxy- and deoxyhemoglobin in rat head by time-resolved beer-lambert law. SPIE, 2389:770–778, 1995.

    Google Scholar 

  82. M. Oda, Y. Yamashita, G. Nishimura, and M. Tamura. A simple and novel algorithm for time-resolved multiwavelength oximetry. Physics in Medicine and Biology, 41:955–961, 1996.

    Article  Google Scholar 

  83. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy. Theoretical and experimental investigation of near infrared light propagation in a model of the adult head. Applied Optics, 36:21–31, 1997.

    Article  Google Scholar 

  84. N. Okui and E. Okada. Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin. Journal of Biomedical Optics, 10(1):011015–1–011015–8, 2005.

    Article  Google Scholar 

  85. M. S. Patterson, B. Chance, and B. C. Wilson. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Applied Optics, 28(12):2331–2336, 1989.

    Article  Google Scholar 

  86. D. M. Rector, R. F. Rogers, J. S. Sschwaber, R. M. Harper, and J. S. George. Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation. NeuroImage, 14:977–994, 2001.

    Article  Google Scholar 

  87. E. O. Reynolds, J. S. Wyatt, D. Azzopardi, D. T. Delpy, E. B. Cady, M. Cope, and S. Wray. New non-invasive methods for assessing brain oxygenation and hemodynamics. British Medical Bulletin, 44:1052–1075, 2004.

    Google Scholar 

  88. K. Sakai, R. Hashimoto, and F. Homae. Sentence processing in the cerebral cortex. Neuroscience Research, 39:1–10, 2001.

    Article  Google Scholar 

  89. K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y. P. Wang. Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measure by near infrared spectroscopy. Early Human Development, 55:229–236, 1999.

    Article  Google Scholar 

  90. B. M. Salzberg and A. L. Obaid. Optical studies of the secretory event at vertebrate nerve terminals. Experimental Biology, 139:195–231, 1988.

    Google Scholar 

  91. A. Sassaroli and S. Fantini. Comment on the modifed beer-lambert law for scattering media. Physics in Medicine and Biology, 49:N255–N257, 2004.

    Article  Google Scholar 

  92. H. Sato, T. Takeuchi, and K. Sakai. Temporal cortex activation during speech recognition: an optical topography study. Cognition, 40:548–560, 1999.

    Google Scholar 

  93. M. L. Schroeter, S. Zysset, T. Kupka, F. Kruggel, and D. Y. von Cramon. Nearinfrared spectroscopy can detect brain activity during a color-word matching stroop task in an event-related design. Human Brain Mapping, 17(61):61–71, 2002.

    Google Scholar 

  94. I.-Y. Son, M. Guhe, W. Gray, B. Yazici, and M. J. Schoelles. Human performance assessment using fnir. In Proceedings of SPIE, 2005.

    Google Scholar 

  95. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syre, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer. Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head. Neuroscience Letters, 291:105–108, 2000.

    Article  Google Scholar 

  96. J. Steinbrink, H.Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg. Determining changes in nir absorption using layered model of the human head. Physics in Medicine and Biology, 46:879–896, 2001.

    Article  Google Scholar 

  97. R. A. Stepnowski, J. A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proceedings of National Academy of Science USA, 88:9382–9386, 1991.

    Google Scholar 

  98. G. Strangman, D. A. Boas, and J. P. Sutton. Non-invasive neuroimaging using near-infrared light. Biological Psychiatry, 52:679–693, 2002.

    Article  Google Scholar 

  99. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas. A quantitative comparison of simultaneous bold fmri and nirs recordings during functional brain activation. NeuroImage, 17:719–731, 2002.

    Article  Google Scholar 

  100. T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni. Multichannel nearinfrared spectroscopy in depression and schizophrenia: Cognitive brain activation study. Biological Psychiatry, 55:501–511, 2004.

    Article  Google Scholar 

  101. G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi. Brain imaging in awake infants by near-infrared optical topography. PNAS, 100(19):10722–10727, 2003.

    Article  Google Scholar 

  102. Y. Takeuchi. Change in blood volume in the brain during a simulated aircraft landing task. Journal of Occupational Health, 42:60–65, 2000.

    Article  Google Scholar 

  103. I. Tasaki and P. M. Byrne. Rapid structural changes in nerve fibers evoked by electric current pulses. Biochemical and Biophysical Research Communications, 188:559–564, 1992.

    Article  Google Scholar 

  104. I. Tasaki and P. M. Byrne. Optical changes during nerve excitation: interpretation on the basis of rapid structural changes in the superficial gel layer of nerve fiber. Physiological Chemistry and Physics and Medical NMR, 26:101–110, 1994.

    Google Scholar 

  105. V. Toronov, A. Webb, and J. H. Choi. Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Medical Physics, 28(4):521–527, 2001.

    Article  Google Scholar 

  106. V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, and E. Gratton. Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging. Optics Express, 9:417–427, 2001.

    Article  Google Scholar 

  107. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer. Cross talk in the lambert-beer calculation for near-infrared wavelengths estimated by monte carlo simulations. Journal of Biomedical Optics, 7(1):51–59, 2002.

    Article  Google Scholar 

  108. A. Villringer and B. Chance. Non-invasive optical spectroscopy and imaging of human brain function. Trends In Neurosciences, 20(10):435-442, 1997.

    Article  Google Scholar 

  109. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl. Near infrared spectroscopy (nirs): a new tool to study hemodynamic changes during activation of brain function in human adults. Neuroscience Letters, 154:101–104, 1993.

    Article  Google Scholar 

  110. E.Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi. Non-invasive assessment of language dominance with nearinfrared spectroscopic mapping. Neuroscience Letters, 256:49–52, 1998.

    Article  Google Scholar 

  111. E. Watanabe, Y. Yamashita, A. Maki, Y. Ito, and H. Koizumi. Noninvasive functional mapping with multi-channel near infrared spectroscopic topography in humans. Neuroscience Letters, 205:41–44, 1996.

    Article  Google Scholar 

  112. M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, and L. A. Paunescu. Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex. NeuroImage, 17:1868–1875, 2002.

    Article  Google Scholar 

  113. Y. Yamashita, M. Oda, H. Naruse, and M. Tamura. In vivo measurement of reduced scattering and absorption coefficients of living tissue using time-resolved spectroscopy. OSA TOPS, 2:387–390, 1996.

    Google Scholar 

  114. Y. Yamashita, M. Oda, E. Ohmae, and M. Tamura. Continuous measurement of oxy- and deoxyhemoglobin of piglet brain by time-resolved spectroscopy. OSA TOPS, 22:205–207, 1998.

    Google Scholar 

  115. P. Zaramella, F. Freato, A. Amigoni, s. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and C. Lino. Brain auditory activation measured by near-infrared spectroscopy (nirs). Pediatric Research, 49:213–219, 2001.

    Google Scholar 

  116. Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas. Eigenvectorbased spatial filtering for reduction of physiological interference in diffuse optical imaging. Journal of Biomedical Optics, 10:011014–1–011014–11, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Son, IY., Yazici, B. (2006). NEAR INFRARED IMAGING AND SPECTROSCOPY FOR BRAIN ACTIVITY MONITORING. In: Byrnes, J., Ostheimer, G. (eds) Advances in Sensing with Security Applications. NATO Security Through Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4295-7_15

Download citation

Publish with us

Policies and ethics