Skip to main content

TRK Oncogenes in Papillary Thyroid Carcinoma

  • Chapter
Molecular Basis of Thyroid Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 122))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid M. Neurotrophic factors and their receptors. Curr Opin Cell Biol 1995; 7:148–155.

    Article  CAS  PubMed  Google Scholar 

  2. Bongarzone I., Pierotti M.A., Monzini N., Mondellini P., Manenti G., Donghi R., Pilotti S., Grieco M., Santoro M., Fusco A., Vecchio G., Della Porta G. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 1989; 4:1457–1462.

    CAS  PubMed  Google Scholar 

  3. Brodeur G.M., Maris J.M., Yamashiro D.J., Hogarty M.D., White P.S. Biology and genetics of human neuroblastomas. J Pediatr Hematol Oncol 1997; 19:93–101.

    Article  CAS  PubMed  Google Scholar 

  4. Butti M.G., Bongarzone I., Ferraresi G., Mondellini P., Borrello M.G., Pierotti M.A. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 1995; 28:15–24.

    Article  CAS  PubMed  Google Scholar 

  5. Cohen Y., Xing M., Mambo E., Guo Z., Wu G., Trink B., Seller U., Westra W.H., Ladenson P.W., Sidransky D. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003; 95:625–627.

    CAS  PubMed  Google Scholar 

  6. Davies A.M. The role of neurotrophins in the developing nervous system. J Neurobiol 1994; 25:1334–1348.

    Article  CAS  PubMed  Google Scholar 

  7. Descamps S., Toillon R.A., Adriaenssens E., Pawlowski V., Cool S.M., Nurcombe V., Le B., X, Boilly B., Peyrat J.P., Hondermarck H. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J Biol Chem 2001; 276:17864–17870.

    Article  CAS  PubMed  Google Scholar 

  8. Di Marco E., Mathor M., Bondanza S., Cutuli N., Marchisio P.C., Cancedda R., De Luca M. Nerve growth factor binds to normal human keratinocytes through high and low affinity receptors and stim-ulates their growth by a novel autocrine loop. J Biol Chem 1993; 268:22838–22846.

    PubMed  Google Scholar 

  9. Djakiew D., Delsite R., Plufg B., Wrathall J., Lynch J.H., Onoda M. Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate. Cancer Res 1991; 51:3304–3310.

    CAS  PubMed  Google Scholar 

  10. Greco A., Fusetti L., Miranda C., Villa R., Zanotti S., Pagliardini S., Pierotti M.A. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene 1998; 16:809–816.

    Article  CAS  PubMed  Google Scholar 

  11. Greco A., Mariani C., Miranda C., Lupas A., Pagliardini S., Pomati M., Pierotti M.A. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995; 15:6118–6127.

    CAS  PubMed  Google Scholar 

  12. Greco A., Mariani C., Miranda C., Pagliardini S., Pierotti M.A. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 1993a; 18:397–400.

    Article  CAS  PubMed  Google Scholar 

  13. Greco A., Miranda C., Pagliardini S., Fusetti L., Bongarzone I., Pierotti M.A. Chromosome 1 rear-rangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chrom Cancer 1997; 19:112–123.

    CAS  PubMed  Google Scholar 

  14. Greco A., Orlandi R., Mariani C., Miranda C., Borrello M.G., Cattaneo A., Pagliardini S., Pierotti M.A. Expression of TRK-T1 oncogene induces differentiation of PC12 cells. Cell Growth Diff 1993b; 4:539–546.

    CAS  PubMed  Google Scholar 

  15. Greco A., Pierotti M.A., Bongarzone I., Pagliardini S., Lanzi C., Della Porta G. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 1992; 7:237–242.

    CAS  PubMed  Google Scholar 

  16. Greco A., Villa R., Fusetti L., Orlandi R., Pierotti M.A. The Gly571Arg mutation, associated with the autonomic and sensory disorder CIPA, causes the inactivation of the NTRK1/NGF receptor. J Cell Physiol 2000; 182:127–133.

    Article  CAS  PubMed  Google Scholar 

  17. Greco A., Villa R., Pierotti M.A. Genomic organization of the human NTRK1 gene. Oncogene 1996; 13:2463–2466.

    CAS  PubMed  Google Scholar 

  18. Greco A., Villa R., Tubino B., Romano L., Penso D., Pierotti M.A. A novel NTRK1 mutation associated with congenital insensitivity to pain anhidrosis. Am J Hum Genet 1999; 64:1207–1210.

    Article  CAS  PubMed  Google Scholar 

  19. Green D.M., Johnson C.P., Hagan H., Corbett A.H. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc Natl Acad Sci U S A 2003; 100:1010–1015.

    CAS  PubMed  Google Scholar 

  20. Hedinger C, Williams ED, Sobin LH. Histological typing of thyroid tumours. Berlin, Heidelberg: WHO Second Edition, Springer-Verlag, 1988.

    Google Scholar 

  21. Hernandez L., Bea S., Bellosillo B., Pinyol M., Falini B., Carbone A., Ott G., Rosenwald A., Fernandez A., Pulford K., Mason D., Morris S.W., Santos E., Campo E. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am J Pathol 2002; 160:1487–1494.

    CAS  PubMed  Google Scholar 

  22. Indo Y., Tsuruta M., Hayashida Y., Karim M.A., Otha K., Kawano T., Mitsubuchi H., Tonoki H., Awaya Y., Matsuda I. Mutations in TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nature Genet 1996; 13:485.

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa F., Takaku F., Nagao M., Sugimura T. Rat c-raf oncogene activation by a rearrangement that produces a fused protein. Mol Cell Biol 1987; 7:1226–1232.

    CAS  PubMed  Google Scholar 

  24. Kaplan D.R., Martin-Zanca D., Parada L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 1991; 350:158–160.

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan D.R., Miller F.D. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 2000; 10:381–391.

    Article  CAS  PubMed  Google Scholar 

  26. Kimura E.T., Nikiforova M.N., Zhu Z., Knauf J.A., Nikiforov Y.E., Fagin J.A. High prevalence of BRAF mutations in thyroid cance: gene evidence for constitutive activation of RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003; 63:1454–1457.

    CAS  PubMed  Google Scholar 

  27. Lamant L., Dastugue N., Pulford K., Delsol G., Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999; 93:3088–3095.

    CAS  PubMed  Google Scholar 

  28. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci 1996; 21:375–382.

    Article  CAS  PubMed  Google Scholar 

  29. Lupas A., Van Dyke M., Stock J. Predicting coiled coilts from protein sequences. Science 1991; 252: 1162–1164.

    CAS  PubMed  Google Scholar 

  30. Martin-Zanca D., Hughes S.H., Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 1986; 319:743–748.

    Article  CAS  PubMed  Google Scholar 

  31. Martin-Zanca D., Oskam R., Mitra G., Copeland T., Barbacid M. Molecular and Biochemical char-acterization of the human trk proto-oncogene. Mol Cell Biol 1989; 9:24–33.

    CAS  PubMed  Google Scholar 

  32. Mencinger M., Aman P. Characterization of TFG in mus musculus and Caenorhabditis elegans. Biochem Biophys Res Comm 1999; 257:67–73.

    Article  CAS  PubMed  Google Scholar 

  33. Mencinger M., Panagopoulos I., Andreasson P., Lassen C., Mitelman F., Aman P. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics 1997; 41:372–331.

    Article  Google Scholar 

  34. Miranda C., Minoletti F., Greco A., Sozzi G., Pierotti M.A. Refined localization of the human TPR gene to chromosome 1q25 by in situ hybridization. Genomics 1994; 23:714–715.

    Article  CAS  PubMed  Google Scholar 

  35. Miranda C., Di Virgilio M., Selleri S., Zanotti G., Pagliardini S., Pierotti M.A., Greco A. Novel pathogenic mechanisms of congenital insensitivity to pain with anhidrosis genetic disorder unveiled by functional analysis of neurotrophic tyrosine receptor kinase type1/nervw growth factor receptor mutations. J Biol Chem 2002a; 277:6455–6462.

    CAS  PubMed  Google Scholar 

  36. Miranda C., Greco A., Miele C., Pierotti M.A., Van Obberghen E. IRS-1 and IRS-2 are recruited by TrkA receptor and oncogenic TRK-T1. J Cell Physiol 2001; 186:35–46.

    Article  CAS  PubMed  Google Scholar 

  37. Miranda C., Selleri S., Pierotti M.A., Greco A. The M581V mutation, associated with a mid form of Congenital Insensitivity to Pain with Anhidrosis, causes partial inactivation of the NTRK1 receptor. J Invest Dermatol 2002b; 119:976–979.

    Article  Google Scholar 

  38. Miranda C., Zanotti G., Pagliardini S., Ponzetto C., Pierotti M.A., Greco A. Gain of function mutations of RTK conserved residues display differential effects on NTRK1 kinase activity. Oncogene 2002c; 21:8334–8339.

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura K., Johnson G.L. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem 2003; 278:36989–36992.

    Article  CAS  PubMed  Google Scholar 

  40. Nikiforova M.N., Stringer J.R., Blough R., Medvedovic M., Fagin J.A., Nikiforov Y.E. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 2000; 290:138–141.

    Article  CAS  PubMed  Google Scholar 

  41. Otten U., Ehrhard P., Peck R. Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Natl Acad Sci USA 1989; 86:10059–10063.

    CAS  PubMed  Google Scholar 

  42. Park M., Dean M., Cooper C.S., Schmidt M., O’Brien S.J., Blair D.G., Vande Woude G.F. Mechanism of met oncogene activation. Cell 1986; 45:895–904.

    Article  CAS  PubMed  Google Scholar 

  43. Pierotti M.A., Bongarzone I., Borrello M.G., Greco A., Pilotti S., Sozzi G. Cytogenetics and molecular genetics of the carcinomas arising from the thyroid epithelial follicular cells. Genes Chrom Cancer 1996; 16:1–14.

    CAS  PubMed  Google Scholar 

  44. Ranzi V., Meakin S.O., Mondellini P., Pierotti M.A., Greco A. The signaling adapters FRS2 and FRS3 are substrates of the thyroid TRK oncoproteins. Endocrinology 2003; 144:922–928.

    Article  CAS  PubMed  Google Scholar 

  45. Reuther G.W., Lambert Q.T., Caligiuri M.A., Der C.J. Identification and characterization of an acti-vating TrkA deletion mutation in acute myeloid leukemia. Mol Biol Cell 2000; 20:8655–8666.

    CAS  Google Scholar 

  46. Roccato E., Miranda C., Ranzi V., Gishizky M.L., Pierotti M.A., Greco A. Biological activity of the thyroid TRK-T3 oncogene requires signaling through Shc. Br J Cancer 2002; 87:645–653.

    Article  CAS  PubMed  Google Scholar 

  47. Roccato E., Pagliardini S., Cleris L., Canevari S., Formelli F., Pierotti M.A., Greco A. Role of TFG sequences outside the coiled-coil domain in TRK-T3 oncogenic activation. Oncogene 2003; 22:807–818.

    Article  CAS  PubMed  Google Scholar 

  48. Rodrigues G.A., Park M. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 1993; 13:6711–6722.

    CAS  PubMed  Google Scholar 

  49. Shibata S., Matsuoka Y., Yoneda Y. Nucleocytoplasmic transport of proteins and poly(A) + RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 2002; 7:421–434.

    Article  CAS  PubMed  Google Scholar 

  50. Soares P., Trovisco V., Rocha A.S., Lima J., Castro P., Preto A., Maximo V., Botelho T., Seruca R., Sobrinho-Simoes M. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003; 22:4578–4580.

    Article  CAS  PubMed  Google Scholar 

  51. Terasawa H., Noda Y., Ito T., Hatanaka H., Ichikawa S., Ogura K., Sumimoto H., Inagaki F. Structure and ligand recognition of the PB1 domain: a novel protein module binding to the PC motif. EMBOJ 2001; 20:3947–3956.

    CAS  Google Scholar 

  52. Weeraratna A.T., Dalrymple S.L., Lamb J.C., Denmeade S.R., Miknyoczki S.J., Dionne C.A., Isaacs J.T. Pan-trk inhibition decreases metastasis and enhances host survival in experimental models as a result of its selective induction of apoptosis of prostate cancer cells. Clin Cancer Res 2001; 7:2237–2245.

    CAS  PubMed  Google Scholar 

  53. Weier H.-U.G., Rhein A.P., Shadravan F., Collins C., Polikoff D. Rapid physical mapping of the human trk protooncogene (NTRK1) to human chromosome 1q21–q22 by P1 clone selection, fluorescence in situ hybridization (FISH), and computer-assisted microscopy. Genomics 1995; 26:390–393.

    Article  CAS  PubMed  Google Scholar 

  54. Wilton S.D., Eyre H., Akkari P.A., Watkins H.C., MacRae C., Laing N.G., Callen, DC. Assignment of the human a-tropomyosin gene TPM3 to 1q22-&τ;q23 by fluorescence in situ hybridisation. Cytogenet Cell Genet 1995; 68:122–124.

    CAS  PubMed  Google Scholar 

  55. Yang T.T., Namba H., Hara T., Takmura N., Nagayama Y., Fukata S., Ishikawa N., Kuma K., Ito K., Yamashita S. p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 1997; 14:1511–1519.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Greco, A., Roccato, E., Pierotti, M.A. (2005). TRK Oncogenes in Papillary Thyroid Carcinoma. In: Farid, N.R. (eds) Molecular Basis of Thyroid Cancer. Cancer Treatment and Research, vol 122. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8107-3_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8107-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8106-4

  • Online ISBN: 978-1-4020-8107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics