Skip to main content

Implications of Thyroid Hormone Signaling Through the Phosphoinositide-3 Kinase for Xenobiotic Disruption of Human Health

  • Chapter
Endocrine-Disrupting Chemicals

Part of the book series: Contemporary Endocrinology ((COE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 2001;81(3): 1097–42.

    PubMed  CAS  Google Scholar 

  2. Yen PM. Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 2003;14(7):327–3.

    Article  PubMed  CAS  Google Scholar 

  3. Boelaert K, Franklyn JA. Thyroid hormone in health and disease. J Endocrinol 2005;187(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  4. Schreiber G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J Endocrinol 2002;175(1):61–73.

    Article  PubMed  CAS  Google Scholar 

  5. Bianco AC, Kim BW. Deiodinases:implications of the local control of thyroid hormone action. J Clin Invest 2006;116(10):2571–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hollenberg AN and Jameson JL. Mechanism of thyroid hormone action. In Endocrinology, 5th ed., DeGroot LJ and Jameson JL, Ed. New York: Elsevier, 2005:1873–97. Jameson ANHaJL. Mechanism of thyroid hormone action. In Endocrinology, 5th ed. LJDaLJ Jameson, Ed. New York: Elsevier, 2005: pp. 1873–97.

    Google Scholar 

  7. O’Shea PJ, Williams GR. Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 2002;175(3):553–70.

    Article  PubMed  CAS  Google Scholar 

  8. Flamant F, Samarut J. Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol Metab 2003;14(2):85–90.

    Article  PubMed  CAS  Google Scholar 

  9. Wondisford FE. Thyroid hormone action: insight from transgenic mouse models. J Investig Med 2003;51(4):215–20.

    PubMed  CAS  Google Scholar 

  10. Forrest D, Reh TA, Rusch A. Neurodevelopmental control by thyroid hormone receptors. Curr Opin Neurobiol 2002;12(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  11. Davis PJ, Davis FB. Nongenomic actions of thyroid hormone. Thyroid 1996;6(5):497–504.

    PubMed  CAS  Google Scholar 

  12. Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 2003;213(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  13. Samuels HH, Tsai JS, Cintron R. Thyroid hormone action: a cell-culture system responsive to physiological concentrations of thyroid hormones. Science 1973;181(106):1253–6.

    Article  PubMed  CAS  Google Scholar 

  14. Storey NM, O’Bryan JP, Armstrong DL. Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Curr Biol 2002;12(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  15. Sakaguchi Y, Cui G, Sen L. Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes. Endocrinology 1996;137(11):4744–51.

    Article  PubMed  CAS  Google Scholar 

  16. Sen L, Sakaguchi Y, Cui G. G protein modulates thyroid hormone-induced Na( + ) channel activation in ventricular myocytes. Am J Physiol Heart Circ Physiol 2002;283(5):H2119–29.

    PubMed  CAS  Google Scholar 

  17. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 2003;546(1):93–7.

    Article  PubMed  CAS  Google Scholar 

  18. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000;407(6803):538–41.

    Article  PubMed  CAS  Google Scholar 

  19. Walker EH, Pacold ME, Perisic O, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin,LY294002, quercetin, myricetin, and staurosporine. Mol Cell 2000;6(4):909–19.

    Article  PubMed  CAS  Google Scholar 

  20. Cao X, Kambe F, Moeller LC, Refetoff S, Seo H. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol Endocrinol 2005;19(1):102–2.

    Article  PubMed  CAS  Google Scholar 

  21. Lei J, Mariash CN, Ingbar DH. 3,3 ^′ ,5-Triiodo-L-thyronine up-regulation of Na,K-ATPase activity, cell surface expression in alveolar epithelial cells is Src kinase-, phosphoinositide 3-kinase-dependent. J Biol Chem 2004;279(46):47589–600.

    Article  PubMed  CAS  Google Scholar 

  22. Moeller LC, Dumitrescu AM, Refetoff S. Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 2005;19(12):2955–63.

    Article  PubMed  CAS  Google Scholar 

  23. Storey NM, Gentile S, Ullah H, et al. Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone. Proc Natl Acad Sci USA 2006;103(13):5197–201.

    Article  PubMed  CAS  Google Scholar 

  24. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006;443(7112):651–7.

    Article  PubMed  CAS  Google Scholar 

  25. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7(8):606–19.

    Article  PubMed  CAS  Google Scholar 

  26. Wymann MP, Marone R. Timing, location, and scaffolding. Curr Opin Cell Biol 2005;17(2):141–9.

    Article  PubMed  CAS  Google Scholar 

  27. Rusten TE, Stenmark H. Analyzing phosphoinositides and their interacting proteins. Nat Methods 2006;3(4):251–8.

    Article  PubMed  CAS  Google Scholar 

  28. Baxter JD, Webb P, Grover G, Scanlan TS. Selective activation of thyroid hormone signaling pathways by GC-1: a new approach to controlling cholesterol and body weight. Trends Endocrinol Metab 2004;15(4):154–7.

    Article  PubMed  CAS  Google Scholar 

  29. Foukas LC, Claret M, Pearce W, et al. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 2006;441(7091):366–70.

    Article  PubMed  CAS  Google Scholar 

  30. Sleeman MW, Wortley KE, Lai KM, et al. Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med 2005;11(2):199–205.

    Article  PubMed  CAS  Google Scholar 

  31. Rosati B, Marchetti P, Crociani O, et al. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K( + ) channels in firing and release. FASEB J 2000;14(15):2601–10.

    Article  PubMed  CAS  Google Scholar 

  32. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006;440(7083):463–9.

    Article  PubMed  CAS  Google Scholar 

  33. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 2001;11(3):297–305.

    Article  PubMed  CAS  Google Scholar 

  34. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006;441(7092):424–30.

    Article  PubMed  CAS  Google Scholar 

  35. Gage FH. Brain, repair yourself. Sci Am 2003;289(3):46–53.

    Article  PubMed  Google Scholar 

  36. Bahls SC, de Carvalho GA. [The relation between thyroid function and depression: a review]. Rev Bras Psiquiatr 2004;26(1):41–9.

    Article  PubMed  Google Scholar 

  37. Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 2005;29(3):414–26.

    Article  PubMed  CAS  Google Scholar 

  38. Montero-Pedrazuela A, Venero C, Lavado-Autric R, et al. Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol Psychiatr 2006;11(4): 361–71.

    Article  CAS  Google Scholar 

  39. Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev 2005;19(1):1–49.

    Article  PubMed  CAS  Google Scholar 

  40. Ramakers GJ. Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci 2002;25(4):191–9.

    Article  PubMed  CAS  Google Scholar 

  41. Tudor EL, Perkinton MS, Schmidt A, et al. ALS2/Alsin regulates Rac-PAK signaling and neurite outgrowth. J Biol Chem 2005;280(41):34735–40.

    Article  PubMed  CAS  Google Scholar 

  42. Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52(1):39–59.

    Article  PubMed  CAS  Google Scholar 

  43. Kanekura K, Hashimoto Y, Kita Y, et al. A Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J Biol Chem 2005;280(6):4532–3.

    Article  PubMed  CAS  Google Scholar 

  44. Kanekura K, Hashimoto Y, Niikura T, Aiso S, Matsuoka M, Nishimoto I. Alsin, the product of ALS2 gene, suppresses SOD1 mutant neurotoxicity through RhoGEF domain by interacting with SOD1 mutants. J Biol Chem 2004;279(18):19247–56.

    Article  PubMed  CAS  Google Scholar 

  45. Sekine Y, Takeda K, Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med 2006;6(1):87–97.

    Article  PubMed  CAS  Google Scholar 

  46. Morita K, Saitoh M, Tobiume K, et al. Negative feedback regulation of ASK1 by protein phosphatase 5 (PP5) in response to oxidative stress. EMBO J 2001;20(21):6028–36.

    Article  PubMed  CAS  Google Scholar 

  47. Gentile S, Darden T, Erxleben C, et al. Rac GTPase signaling through the PP5 protein phosphatase. Proc Natl Acad Sci USA. 103(13):5202–6.

    Google Scholar 

  48. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response. Nat Med 2006;12(9):1005–5.

    PubMed  CAS  Google Scholar 

  49. Weggen S, Eriksen JL, Das P, et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001;414(6860):212–6.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou Y, Su Y, Li B, et al. Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 2003;302(5648):1215–7.

    Article  PubMed  CAS  Google Scholar 

  51. Maillet M, Robert SJ, Cacquevel M, et al. Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol 2003;5(7):633–9.

    Article  PubMed  CAS  Google Scholar 

  52. Van Aelst L, Cline HT. Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 2004;14(3):297–304.

    Article  PubMed  CAS  Google Scholar 

  53. Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 2004;24(35):7707–17.

    Article  PubMed  CAS  Google Scholar 

  54. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998;8(9):827–56.

    Article  PubMed  CAS  Google Scholar 

  55. Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM. Environmental chemicals and thyroid function. Eur J Endocrinol 2006;154(5):599–611.

    Article  PubMed  CAS  Google Scholar 

  56. Porterfield SP. Thyroidal dysfunction and environmental chemicals–potential impact on brain development. Environ Health Perspect 2000;108(Suppl 3):433–8.

    Article  PubMed  CAS  Google Scholar 

  57. Colborn T. Neurodevelopment and endocrine disruption. Environ Health Perspect 2004;112(9): 944–9.

    PubMed  CAS  Google Scholar 

  58. Furlow JD, Neff ES. A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab 2006;17(2):40–7.

    Article  PubMed  CAS  Google Scholar 

  59. Zoeller RT. Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals. Mol Cell Endocrinol 2005;242(1–2):10–5.

    Article  PubMed  CAS  Google Scholar 

  60. Kimura-Kuroda J, Nagata I, Kuroda Y. Hydroxylated metabolites of polychlorinated biphenyls inhibit thyroid-hormone-dependent extension of cerebellar Purkinje cell dendrites. Brain Res Dev Brain Res 2005;154(2):259–63.

    Article  PubMed  CAS  Google Scholar 

  61. Gilbert ME. Alterations in synaptic transmission and plasticity in area CA1 of adult hippocampus following developmental hypothyroidism. Brain Res Dev Brain Res 2004;148(1):11–8.

    Article  PubMed  CAS  Google Scholar 

  62. Hill A, Howard CV, Strahle U, Cossins A. Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations. Toxicol Sci 2003;76(2):392–9.

    Article  PubMed  CAS  Google Scholar 

  63. Turque N, Palmier K, Le Mevel S, Alliot C, Demeneix BA. A rapid, physiologic protocol for testing transcriptional effects of thyroid-disrupting agents in premetamorphic Xenopus tadpoles. Environ Health Perspect 2005;113(11):1588–93.

    Article  PubMed  CAS  Google Scholar 

  64. Ananthanarayanan B, Ni Q, Zhang J. Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity. Proc Natl Acad Sci USA 2005;102(42):15081–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Armstrong, D.L. (2007). Implications of Thyroid Hormone Signaling Through the Phosphoinositide-3 Kinase for Xenobiotic Disruption of Human Health. In: Gore, A.C. (eds) Endocrine-Disrupting Chemicals. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/1-59745-107-X_8

Download citation

  • DOI: https://doi.org/10.1007/1-59745-107-X_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-830-0

  • Online ISBN: 978-1-59745-107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics