Skip to main content

Neuropharmacology of Synthetic Cathinones

  • Chapter
  • First Online:
New Psychoactive Substances

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 252))

Abstract

Synthetic cathinones are derivatives of the naturally occurring compound cathinone, the main psychoactive ingredient in the khat plant Catha edulis. Cathinone is the β-keto analog of amphetamine, and all synthetic cathinones display a β-keto moiety in their structure. Several synthetic cathinones are widely prescribed medications (e.g., bupropion, Wellbutrin®), while others are problematic drugs of abuse (e.g., 4-methylmethcathinone, mephedrone). Similar to amphetamines, synthetic cathinones are psychomotor stimulants that exert their effects by impairing the normal function of plasma membrane transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT). Ring-substituted cathinones like mephedrone are transporter substrates that evoke neurotransmitter release by reversing the normal direction of transporter flux (i.e., releasers), whereas pyrrolidine-containing cathinones like 3,4-methylenedioxypyrovalerone (MDPV) are potent transporter inhibitors that block neurotransmitter uptake (i.e., blockers). Regardless of molecular mechanism, all synthetic cathinones increase extracellular monoamine concentrations in the brain, thereby enhancing cell-to-cell monoamine signaling. Here, we briefly review the mechanisms of action, structure-activity relationships, and in vivo pharmacology of synthetic cathinones. Overall, the findings show that certain synthetic cathinones are powerful drugs of abuse that could pose significant risk to users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-Bromo MCAT:

1-(4-Bromophenyl)-2-(methylamino)propan-1-one (brephedrone)

4-Chloro MCAT:

1-(4-Chlorophenyl)-2-(methylamino)propan-1-one (clephedrone)

4-Fluoro MCAT:

1-(4-Fluorophenyl)-2-(methylamino)propan-1-one (flephedrone)

4-Methyl MCAT (4-MMC):

2-(Methylamino)-1-(4-methylphenyl)propan-1-one (mephedrone)

4-Methoxy MCAT:

1-(4-Methoxyphenyl)-2-(methylamino)propan-1-one (methedrone)

4-TFM MCAT:

2-(Methylamino)-1-[4-(trifluoromethyl)phenyl]propan-1-one

MCAT:

2-(Methylamino)-1-phenylpropan-1-one (methcathinone)

MDMA:

1-(2H-1,3-Benzodioxol-5-yl)-N-methylpropan-2-amine

MDMC:

1-(2H-1,3-Benzodioxol-5-yl)-2-(methylamino)propan-1-one (methylone)

MDPV:

1-(2H-1,3-Benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one

α-PBP:

1-Phenyl-2-(pyrrolidin-1-yl)butan-1-one

α-PHP:

1-Phenyl-2-(pyrrolidin-1-yl)hexan-1-one

α-PPP:

1-Phenyl-2-(pyrrolidin-1-yl)propan-1-one

α-PVP:

1-Phenyl-2-(pyrrolidin-1-yl)pentan-1-one

References

  • Aarde SM, Huang PK, Creehan KM, Dickerson TJ, Taffe MA (2013a) The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats. Neuropharmacology 71:130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aarde SM, Angrish D, Barlow DJ, Wright MJ Jr, Vandewater SA, Creehan KM et al (2013b) Mephedrone (4-methylmethcathinone) supports intravenous self-administration in Sprague-Dawley and Wistar rats. Addict Biol 18(5):786–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aarde SM, Creehan KM, Vandewater SA, Dickerson TJ, Taffe MA (2015) In vivo potency and efficacy of the novel cathinone α-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: self-administration and locomotor stimulation in male rats. Psychopharmacology (Berl) 232(16):3045–3055

    Article  CAS  PubMed Central  Google Scholar 

  • Adams SV, DeFelice LJ (2003) Ionic currents in the human serotonin transporter reveal inconsistencies in the alternating access hypothesis. Biophys J 85(3):1548–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hebshi NN, Skaugh N (2005) Khat (Catha edulis)- an updated review. Addict Biol 10(4):299–307

    Article  CAS  PubMed  Google Scholar 

  • Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD (2017) The concise guide to pharmacology 2017/18: transporters. Br J Pharmacol 174(Suppl 1):S360–S446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbuthnott GW, Fairbrother IS, Butcher SP (1990) Dopamine release and metabolism in the rat striatum: an analysis by ‘in vivo’ brain microdialysis. Pharmacol Ther 48(3):281–293

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J, Whitby LG, Hertting G (1961) Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133(3450):383–384

    Article  CAS  PubMed  Google Scholar 

  • Banks ML, Worst TJ, Rusyniak DE, Sprague JE (2014) Synthetic cathinones (“bath salts”). J Emerg Med 46(5):632–642

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer CT, Banks ML, Blough BE, Negus SS (2013) Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats. Br J Pharmacol 168(4):850–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Wang X, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 189(4):407–424

    Article  CAS  Google Scholar 

  • Baumann MH, Clark RD, Rothman RB (2008) Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain. Pharmacol Biochem Behav 90(2):208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Clark RD, Woolverton WL, Wee S, Blough BE, Rothman RB (2011) In vivo effects of amphetamine analogs reveal evidence for serotonergic inhibition of mesolimbic dopamine transmission in the rat. J Pharmacol Exp Ther 337(1):218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF et al (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37(5):1192–1203

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive “bath salts” products. Neuropsychopharmacology 38(4):552–562

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH (2014) Awash in a sea of ‘bath salts’: implications for biomedical research and public health. Addiction 109(10):157–159

    Article  Google Scholar 

  • Baumann MH, Solis E Jr, Watterson LR, Marusich JA, Fantegrossi WE, Wiley JL (2014a) Bath salts, spice, and related designer drugs: the science behind the headlines. J Neurosci 34(46):15150–15158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumann MH, Bulling S, Benaderet TS, Saha K, Avestas MA, Partilla JS et al (2014b) Evidence for a role of transporter-mediated currents in the depletion of brain serotonin induced by serotonin transporter substrates. Neuropsychopharmacology 39(6):1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ, Smith HR, Daunais JB, Nader MA, Porrino LJ (2006) Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci 23(11):3109–3118

    Article  PubMed  Google Scholar 

  • Bonano JS, Glennon RA, De Felice LJ, Banks ML, Negus SS (2014) Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology (Berl) 231(1):199–207

    Article  CAS  Google Scholar 

  • Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA et al (2015) Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172(10):2433–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bönisch H (1986) The role of co-transported sodium in the effect of indirectly acting sympathomimetic amines. Naunyn Schmiedebergs Arch Pharmacol 332(2):135–141

    Article  PubMed  Google Scholar 

  • Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1988) Amphetamine-induced dopamine release in the rat striatum: an in vivo microdialysis study. J Neurochem 50(2):346–355

    Article  CAS  PubMed  Google Scholar 

  • Callaway CW, Kuczenski R, Segal DS (1989) Reserpine enhances amphetamine stereotypies without increasing amphetamine-induced changes in striatal dialysate dopamine. Brain Res 505(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Cameron KN, Kolanos R, Solis E Jr, Glennon RA, Da Felice LF (2013) Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter. Br J Pharmacol 168(7):1750–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2011) Emergency department visits after use of a drug sold as “bath salts” – Michigan, November 13, 2010-March 31, 2011. MMWR Morb Mort Wkly Rep 60(19):624–627

    Google Scholar 

  • Cercato C, Roizenblatt VA, Leança CC, Segal A, Lopes Filho AP, Mancini MC et al (2009) A randomized double-blind placebo-controlled study of the long-term efficacy and safety of diethylpropion in the treatment of obese subjects. Int J Obes (Lond) 33(8):857–865

    Article  CAS  Google Scholar 

  • Chen NH, Reith ME (1994) Effects of locally applied cocaine, lidocaine, and various uptake blockers on monoamine transmission in the ventral tegmental area of freely moving rats: a microdialysis study on monoamine interrelationships. J Neurochem 63(5):1701–1713

    Article  CAS  PubMed  Google Scholar 

  • Cozzi NV, Sievert MK, Shulgin AT, Jacob P 3rd, Ruoho AE (1999) Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol 281(1):63–69

    Article  Google Scholar 

  • Cozzi NV, Brandt SD, Daley PF, Partilla JS, Rothman RB, Tulzer A et al (2013) Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. Eur J Pharmacol 699(1–3):180–187

    Article  CAS  PubMed  Google Scholar 

  • Creehan KM, Vandewater SA, RAffe MA (2015) Intravenous self-administration of mephedrone, methylone and MDMA in female rats. Neuropharmacology 92:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97(1):20–26

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt L, Baxter AJ, Lee YY, Hall W, Sara GE, Johns N et al (2014) The global epidemiology and burden of psychostimulant dependence: findings from the Global Burden of Disease Study 2010. Drug Alcohol Depend 137:36–47

    Article  PubMed  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Devroye C, Filip M, Przegalinski E, McCreary AC, Spampinato U (2013) Serotonin2C receptors and drug addiction: focus on cocaine. Exp Brain Res 230(4):537–545

    Article  CAS  PubMed  Google Scholar 

  • Dhillon S, Yang LP, Curran MP (2008) Bupropion: a review of its use in the management of major depressive disorder. Drugs 68(5):653–689

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Drug Enforcement Administration (DEA), Department of Justice (2013) Establishment of drug codes for 26 substances. Final rule. Fed Regist 78(3):664–666

    Google Scholar 

  • Dwoskin LP, Rauhut AS, King-Paspisil KA, Bardo MT (2006) Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev 12(3–4):178–207

    Article  PubMed  Google Scholar 

  • Elmore JS, Dillon-Carter O, Partilla JS, Ellefsen KN, Concheiro M, Suzuki M et al (2017) Pharmacokinetic profiles and pharmacodynamic effects for methylone and its metabolites in rats. Neuropsychopharmacology 42(3):649–660

    Article  CAS  PubMed  Google Scholar 

  • Emerson TS, Cisek JE (1993) Methcathinone: a Russian designer amphetamine infiltrates the rural midwest. Ann Emerg Med 22(12):1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Engidawork E (2017) Pharmacological and toxicological effects of Catha edulis F. (Khat). Phytother Res 31(7):1019–1028

    Article  PubMed  Google Scholar 

  • Eshleman AJ, Henningsen RA, Neve KA, Janowsky A (1994) Release of dopamine via the human transporter. Mol Pharmacol 45(2):312–316

    CAS  PubMed  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85(12):1803–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Swanson T, Johnson RA (2017) Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J Pharmacol Exp Ther 360(1):33–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espana RA, Jones SR (2013) Presynaptic dopamine modulation by stimulant self-administration. Front Biosci (Schol Ed) 5:261–276

    Article  Google Scholar 

  • Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC (2013) In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology 38(4):563–573

    Article  CAS  PubMed  Google Scholar 

  • Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre M, Abanades S, Roset PN, Peiro AM, Torrens M, O’Mathuna B et al (2007) Pharmacological interaction between 3,4-methylenedioxymethamphetamine (ecstasy) and paroxetine: pharmacological effects and pharmacokinetics. J Pharmacol Exp Ther 323(3):954–962

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    Article  CAS  PubMed  Google Scholar 

  • Florin SM, Kuczenski R, Segal DS (1995) Effects of reserpine on extracellular caudate dopamine and hippocampus norepinephrine responses to amphetamine and cocaine: mechanistic and behavioral considerations. J Pharmacol Exp Ther 274(1):231–241

    CAS  PubMed  Google Scholar 

  • Gannon BM, Williamson A, Suzuki M, Rice KC, Fantegrossi WE (2016) Stereoselective effects of abused “bath salt” constituent 3,4-methylenedioxypyrovalerone in mice: drug discrimination, locomotor activity, and thermoregulation. J Pharmacol Exp Ther 356(3):615–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannon BM, Rice KC, Collins GT (2017) Reinforcing effects of abused ‘bath salts’ constituents 3,4-methylenedioxypyrovalerone and α-pyrrolidinopentiophenone and their enantiomers. Behav Pharmacol 28(7):578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannon BM, Galindo KI, Mesmin MP, Sulima A, Rice KC, Collins GT (2018) Relative reinforcing effects of second-generation synthetic cathinones: acquisition of self-administration and fixed-ratio dose-response curves in rats. Neuropharmacology 134(Pt A):28–35

    Article  CAS  PubMed  Google Scholar 

  • Gatch MB, Taylor CM, Forster MJ (2013) Locomotor stimulant and discriminative stimulus effects of ‘bath salt’ cathinones. Behav Pharmacol 24(5–6):437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295(1–3):149–154

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Yousif M, Naiman N, Kalix P (1987) Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 26(3):547–551

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Dukat M (2017) Structure-activity relationships of synthetic cathinones. Curr Top Behav Neurosci 32:19–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg J, Gardos G, Cole JO (1973) A controlled evaluation of pyrovalerone in chronically fatigued volunteers. Int Pharmacopsychiatry 8(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Goldstone MS (1993) ‘Cat’: methcathinone – a new drug of abuse. JAMA 269(19):2508

    Article  CAS  PubMed  Google Scholar 

  • Grohol J (2017) Top 25 psychiatric medications for 2016. https://psychcentral.com/blog/top-25-psychiatric-medications-for-2016. Accessed 8 Sep 2018

  • Gundlah C, Martin KF, Heal DJ, Auerback SB (1997) In vivo criteria to differentiate monoamine reuptake inhibitors from releasing agents: sibutramine is a reuptake inhibitor. J Pharmacol Exp Ther 283(2):581–591

    CAS  PubMed  Google Scholar 

  • Hadlock GV, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC et al (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designed stimulant of abuse. J Pharmacol Exp Ther 339(2):530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkila RE, Orlansky H, Cogen G (1975) Studies on the distinction between uptake inhibition and release of (3H)dopamine in rat brain tissue slices. Biochem Pharmacol 24(8):847–852

    Article  CAS  PubMed  Google Scholar 

  • Henningfield JE, Cohen C, Heishman SJ (1991) Drug self-administration methods in abuse liability evaluation. Br J Addict 86(12):1571–1577

    Article  CAS  PubMed  Google Scholar 

  • Héron C, Costentin J, Bonnet JJ (1994) Evidence that pure uptake inhibitors including cocaine interact slowly with the dopamine neuronal carrier. Eur J Pharmacol 264(3):391–398

    Article  PubMed  Google Scholar 

  • Hilber B, Scholze P, Dorostkar MM, Sandtner W, Holy M, Boehm S et al (2005) Serotonin-transporter mediated effux: a pharmacological analysis of amphetamines and non-amphetamines. Neuropharmacology 49(6):811–819

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Kimmel HL (2008) Monoamine transporters and psychostimulant addiction. Biochem Pharmacol 75(1):196–217

    Article  CAS  PubMed  Google Scholar 

  • Howell LL, Cunningham KA (2015) Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 67(1):176–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang PK, Aarde SM, Angrish D, Houseknecht KL, Dickerson TJ, Taffe MA (2012) Contrasting effects of d-methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxypyrovalerone, and 4-methylmethcathinone on wheel activity in rats. Drug Alcohol Depend 126(1–2):168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huestis MA, Brandt SD, Rana S, Auwärter V, Baumann MH (2017) Impact of novel psychoactive substances on clinical and forensic toxicology and global public health. Clin Chem 63(10):1564–1569

    Article  CAS  PubMed  Google Scholar 

  • Huskinson SL, Naylor JE, Townsend EA, Rowlett JK, Blough BE, Freeman KB (2017) Self-administration and behavioral economics of second-generation synthetic cathinones in male rats. Psychopharmacology (Berl) 234(4):589–598

    Article  CAS  Google Scholar 

  • Hysek CM, Simmler LD, Nicola VG, Vischer N, Donzelli M, Krahenbuhl S et al (2012) Duloxetine inhibits effects of MDMA (“ecstasy”) in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One 7(5):e36476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikemoto S, Bonci A (2014) Neurocircuitry of drug reward. Neuropharmacology 76(Pt B):329–341

    Article  CAS  PubMed  Google Scholar 

  • Iverson L (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 147(Suppl 1):S82–S88

    Article  CAS  Google Scholar 

  • Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211(5052):969–970

    Article  CAS  PubMed  Google Scholar 

  • Johnson AR, Banks ML, Selley DE, Negus SS (2018) Amphetamine maintenance differentially modulates effects of cocaine, methylenedioxypyrovalerone (MDPV), and methamphetamine on intracranial self-stimulation and nucleus accumbens dopamine in rats. Neuropsychopharmacology 43(8):1753–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaizaki A, Tanaka S, Numazawa S (2014) New recreational drug 1-phenyl-2-(1-pyrrolidinyl)-1-pentanone (alpha-PVP) activates central nervous system via dopaminergic neuron. J Toxicol Sci 39(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Kalix P (1980) Hypermotility of the amphetamine type induced by a constituent of khat leaves. Br J Pharmacol 68(1):11–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalix P, Glennon RA (1986) Further evidence for an amphetamine-like mechanism of action of the alkaloid cathinone. Biochem Pharmacol 35(18):3015–3019

    Article  CAS  PubMed  Google Scholar 

  • Kalix P (1990) Pharmacological properties of the stimulant khat. Pharmacol Ther 48(3):397–416

    Article  CAS  PubMed  Google Scholar 

  • Kaminski BJ, Griffiths RR (1994) Intravenous self-injection of methcathinone in the baboon. Pharmacol Biochem Behav 27(4):981–983

    Article  Google Scholar 

  • Kaminska K, Noworyta-Sokolowska K, Górska A, Rzemieniec J, Wnuk A, Wojtas A et al (2018) The effects of exposure to mephedrone during adolescence on brain neurotransmission and neurotoxicity in adult rats. Neurotox Res 34(3):525–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karch SB (2015) Cathinone neurotoxicity (“The 3Ms”). Curr Neuropharmacol 13(1):21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F et al (2011) Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol 164(8):1949–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254(5031):578–579

    Article  CAS  PubMed  Google Scholar 

  • Kolanos R, Solis E Jr, Sakloth F, De Felice LJ, Glennon RA (2013) “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Nerosci 4(12):1524–1529

    Article  CAS  Google Scholar 

  • Kolanos R, Sakloth F, Jain AD, Partilla JS, Baumann MH, Glennon RA (2015a) Structural modification of the designer stimulant α-pyrrolidinovalerophenone (α-PVP) influences potency at dopamine transporters. ACS Chem Nerosci 6(10):1726–1731

    Article  CAS  Google Scholar 

  • Kolanos R, Partilla JS, Baumann MH, Hutsell BA, Banks ML, Negus SS et al (2015b) Stereoselective actions of methylenedioxypyrovalerone (MDPV) to inhibit dopamine and norepinephrine transporters and facilitate intracranial self-stimulation in rats. ACS Chem Nerosci 6(5):771–777

    Article  CAS  Google Scholar 

  • Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Erikson J, Loland CJ et al (2011) SLC6 neurotransmitter transporters: structure, function and regulation. Pharmacol Rev 63(3):585–640

    Article  CAS  PubMed  Google Scholar 

  • Liang NY, Rutledge CO (1982) Evidence for carrier-mediated efflux of dopamine from corpus striatum. Biochem Pharmacol 31(15):2479–2484

    Article  CAS  PubMed  Google Scholar 

  • Liechti ME, Vollenweider FX (2001) Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies. Hum Psychopharmacol 16(8):589–598

    Article  CAS  PubMed  Google Scholar 

  • López-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J (2012) Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol 167(2):407–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madras BK (2017) The growing problem of new psychoactive substances (NPS). Curr Top Behav Neurosci 32:1–18

    CAS  PubMed  Google Scholar 

  • Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, Davidson N (1994) Conducting states of a mammalian serotonin transporter. Neuron 12(4):845–859

    Article  CAS  PubMed  Google Scholar 

  • Marusich JA, Grant KR, Blough BE, Wiley JL (2012) Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology 33(5):1305–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87:206–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD (2016) Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br J Pharmacol 173(17):2657–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta NB (1974) Meta chloro substituted-α-butylamino-propiophenones. Burroughs Wellcome Company. North Carolina, USA. US3819706

    Google Scholar 

  • Meltzer PC, Butler D, Deschamps JR, Madras BK (2006) 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem 49(4):1420–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollenhauer HH, Morré DJ, Rowe LD (1990) Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 1031(2):225–246

    Article  CAS  PubMed  Google Scholar 

  • Motbey CP, Clemens KJ, Apetz N, Winstock AR, Ramsey J, Li KM et al (2013) High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine. J Psychopharmacol 27(9):823–836

    Article  CAS  PubMed  Google Scholar 

  • Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559(2–3):132–137

    Article  CAS  PubMed  Google Scholar 

  • Negus SS, Miller LL (2014) Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66(3):869–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negus SS, Banks ML (2017) Decoding the structure of abuse potential for new psychoactive substances: structure-activity relationships for abuse-related effects of 4-substituted methcathinone analogs. Curr Top Behav Neurosci 32:119–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nomikos GG, Damsma G, Wenkstern D, Fibiger HC (1990) In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse 6(1):106–112

    Article  CAS  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350(6316):350–354

    Article  CAS  PubMed  Google Scholar 

  • Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47(2):368–373

    CAS  PubMed  Google Scholar 

  • Pifl C, Reither H, Hornykiewicz O (2015) The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol 755:119–126

    Article  CAS  PubMed  Google Scholar 

  • Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8(1):33–42

    Article  PubMed  Google Scholar 

  • Quick MW (2003) Regulating the conducting states of a mammalian serotonin transporter. Neuron 40(3):537–549

    Article  CAS  PubMed  Google Scholar 

  • Raiteri M, Cerrito F, Cervoni AM, Del Carmine R, Ribera MT, Levi G (1978) Release of dopamine from striatal synaptosomes. Ann Ist Super Sanita 14(1):97–110

    CAS  PubMed  Google Scholar 

  • Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH et al (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1–19

    Article  CAS  PubMed  Google Scholar 

  • Rickli A, Hoener MD, Liechti ME (2015) Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 25(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Robertson SD, Matthies HJ, Galli A (2009) A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol 39(2):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI et al (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39(1):32–41

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479(1–3):23–40

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Clark RD, Partilla JS, Baumann MH (2003a) (+)-Fenfluramine and its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters. J Pharmacol Exp Ther 305(3):1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA et al (2003b) In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J Pharmacol Exp Ther 307(1):138–145

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK et al (2005) Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration. J Pharmacol Exp Ther 313(3):1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30(2):173–185

    Article  CAS  PubMed  Google Scholar 

  • Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M et al (2015) “Second-generation” mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 40(6):1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakloth F, Kolanos R, Mosier PD, Bonano JS, Banks ML, Partilla JS et al (2015) Steric parameters, molecular modeling and hydropathic interaction analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172(9):2210–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez C, Reines EH, Montgomery SA (2014) A comparative review of escitalopram, paroxetine, and sertraline: are they all alike? Int Clin Psychopharmacol 29(4):185–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandtner W, Stockner T, Hasenhuetl PS, Partilla JS, Seddik A, Zhang YW et al (2016) Binding mode selection determines the action of ecstasy homologs at monoamine transporters. Mol Pharmacol 89(1):165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schicker K, Uzelac Z, Gesmonde J, Bulling S, Stockner T, Freissmuth M (2012) Unifying concept of serotonin transporter-associated currents. J Biol Chem 287(2):438–445

    Article  CAS  PubMed  Google Scholar 

  • Schindler CW, Thorndike EB, Goldberg SR, Lehner KR, Cozzi NV, Brandt SD et al (2016) Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Pyschopharmacology (Berl) 233(10):1981–1990

    Article  CAS  Google Scholar 

  • Scholze P, Zwach J, Kattinger A, Pifl C, Singer EA, Sitte HH (2000) Transporter-mediated release: a superfusion study on human embryonic kidney cells stably expressing the human serotonin transporter. J Pharmacol Exp Ther 293(3):870–878

    CAS  PubMed  Google Scholar 

  • Schütte J (1961) Anorexigenic propiophenones. Temmler Werke, Hamburg-Neugraben, Germany. US3001910A

    Google Scholar 

  • Seddik A, Geerke DP, Stockner T, Holy M, Kudlacek O, Cozzi NV et al (2017) Combined simulation and mutation studies to elucidate selectivity of unsubstituted amphetamine-like cathinones at the dopamine transporter. Mol Inform 36(5–6)

    Article  CAS  Google Scholar 

  • Seeger E (1967) α-Pyrrolidino ketones. Boehringer Ingelheim GmbH, Biberach an der Riss, Germany. Boehringer Ingelheim G.m.b.H. US3314970

    Google Scholar 

  • Shanks KG, Dann T, Behonick G, Terrell A (2012) Analysis of first and second-generation legal highs for synthetic cannabinoids and synthetic stimulants by ultra-performance liquid chromatography and time of flight mass spectrometry. J Anal Toxicol 36(6):360–371

    Article  CAS  PubMed  Google Scholar 

  • Shekar A, Aguilar JI, Galli G, Cozzi NV, Brandt SD, Ruoho AE et al (2017) Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter. J Chem Neuroanat 83-84:69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada S, Kitayam S, Lin CL, Patel A, Nanthakumar E, Gregor P et al (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254(5031):576–578

    Article  CAS  PubMed  Google Scholar 

  • Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE et al (2013) Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol 23(9):1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Shortall SE, Spicer CH, Ebling FJ, Green AR, Fone KC, King MV (2016) Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict Biol 21(6):1127–1139

    Article  CAS  PubMed  Google Scholar 

  • Sikk K, Taba P (2015) Methcathinone “kitchen chemistry” and permanent neurological damage. Int Rev Neurobiol 120:257–271

    Article  PubMed  CAS  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J et al (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168(2):458–470

    Article  CAS  PubMed  Google Scholar 

  • Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71(3):1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Sitte HH, Scholze P, Schloss P, Pifl C, Singer EA (2000) Characterization of carrier-mediated efflux in human embryonic kidney 293 cells stably expressing the rat serotonin transporter: a superfusion study. J Neurochem 73(3):1317–1324

    Article  Google Scholar 

  • Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Solis E Jr (2017) Electrophysiological actions of synthetic cathinones on monoamine transporters. Curr Top Behav Neurosci 32:73–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6(3):294–302

    Article  CAS  PubMed  Google Scholar 

  • Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: actions of dopamine and psychostimulants. J Neurosci 17(3):960–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxical (Phila) 49(6):499–505

    Article  CAS  Google Scholar 

  • Stepens A, Logina I, Liguts V, Aldins P, Eksteina I, Platkajis A et al (2008) A Parkinsonian syndrome in methcathinone users and the role of manganese. N Engl J Med 358(10):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Suplicy H, Boguszewski CL, dos Santos CM, do Desterro de Figueiredo M, Cuha DR, Radominski R (2014) A comparative study of five centrally acting drugs on the pharmacological treatment of obesity. Int J Obes (Lond) 38(8):1097–1103

    Article  CAS  Google Scholar 

  • Suyama JA, Sakloth F, Kolanos R, Glennon RA, Lazenka MF, Negus SS et al (2016) Abuse-related neurochemical effects of para-substituted methcathinone analogs in rats: microdialysis studies of nucleus accumbens dopamine and serotonin. J Pharmacol Exp Ther 356(1):182–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Deschamps JR, Jacobson AE, Rice KC (2015) Chiral resolution and absolute configuration of the enantiomers of the psychoactive “designer drug” 3,4-methylenedioxypyrovalerone. Chirality 27(4):287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomae K (1963) α-Pyrrolidino-ketones. Dr. Karl Thomae GmbH, Biberach an der Riss, Germany. GB 933507

    Google Scholar 

  • United Nations Office on Drugs and Crime (UNODC) (2017) Market analysis of synthetic drugs. Amphetamine-type stimulants, new psychoactive substances. World Drug Report 2017. Booklet 4. Vienna, Austria. https://www.unodc.org/wdr2017/field/Booklet_4_ATSNPS.pdf. Accessed 8 Sep 2018

  • van der Schoot J, Ariens EJ, van Rossum J, Hurkmans JA (1962) Phenylisopropylamine derivatives, structure and action. Arzneimittelforschung 12:902–907

    PubMed  Google Scholar 

  • Vandewater SA, Creehan KM, Taffe MA (2015) Intravenous self-administration of entactogen-class stimulants in male rats. Neuropharmacology 99:538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaugeois JM, Bonnet JJ, Duterte-Boucher D, Costentin J (1993) In vivo occupancy of the striatal dopamine uptake complex by various inhibitors does not predict their effects on locomotion. Eur J Pharmacol 230(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162(4):712–725

    Article  CAS  PubMed  Google Scholar 

  • Warrick BJ, Hill M, Hekman K, Christensen R, Goetz R, Casavant MJ et al (2013) A 9-state analysis of designer stimulant, “bath salt,” hospital visits reported to poison control centers. Ann Emerg Med 62(3):244–251

    Article  PubMed  Google Scholar 

  • Wander A (1963) α-Pyrrolidino-valerophenones. Dr. A. Wander S.A., Bern, Switzerland. GB 927475

    Google Scholar 

  • Watterson LR, Hood L, Sewalia K, Tomek SE, Yahn S, Johnson CT et al (2012) The reinforcing and rewarding effects of methylone, a synthetic cathinone commonly found in “bath salts.” J Addict Res Ther (Suppl 9). pii: 002

    Google Scholar 

  • Watterson LR, Kugahl PR, Nemirovsky NE, Sewalia K, Grabenauer M, Thomas BF et al (2014) Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict Biol 19(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Watterson LR, Olive MF (2017) Reinforcing effects of cathinone NPS in the intravenous drug self-administration paradigm. Curr Top Behav Neurosci 32:133–143

    Article  PubMed  CAS  Google Scholar 

  • Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313(2):848–854

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Woolverton WL (2006) Self-administration of mixtures of fenfluramine and amphetamine by rhesus monkeys. Pharmacol Biochem Behav 84(2):337–343

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I, Wanat MJ, Clark JJ, Phillips PE (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 3:29–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojcieszak J, Andrzejczak D, Wojtas A, Golembiowska K, Zawilska JB (2018) Effects of the new generation of α-pyrrolidinophenones on spontaneous locomotor activities in mice, and on extracellular dopamine and serotonin levels in the mouse striatum. Forensic Toxicol 36(2):334–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright MJ Jr, Angrish D, Aarde SM, Barlow DJ, Buczynski MW, Creehan KM et al (2012) Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats. PLoS One 7(8):e44652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Newman AH, Xu M (2014) Dopamine D1 an D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration. Neuroscience 278:154–164

    Article  CAS  PubMed  Google Scholar 

  • Zdrazil B, Hellsberg E, Viereck M, Ecker GF (2016) From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter. Medchemcomm 7(9):1819–1831

    Article  CAS  PubMed  Google Scholar 

  • Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V et al (2009) Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther 329(2):738–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research program of Dr. Baumann is generously supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health, grant DA00523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Baumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baumann, M.H., Walters, H.M., Niello, M., Sitte, H.H. (2018). Neuropharmacology of Synthetic Cathinones. In: Maurer, H., Brandt, S. (eds) New Psychoactive Substances . Handbook of Experimental Pharmacology, vol 252. Springer, Cham. https://doi.org/10.1007/164_2018_178

Download citation

Publish with us

Policies and ethics