Skip to main content

Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment

  • Chapter
  • First Online:
Brown Adipose Tissue

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 251))

Abstract

Human brown adipose tissue (BAT) is experimentally modeled to better understand the biology of this important metabolic tissue, and also to enable the potential discovery and development of novel therapeutics for obesity and sequelae resulting from the persistent positive energy balance. This chapter focuses on translation into humans of findings and hypotheses generated in nonhuman models of BAT pharmacology. Given the demonstrated challenges of sustainably reducing caloric intake in modern humans, potential solutions to obesity likely lie in increasing energy expenditure. The energy-transforming activities of a single cell in any given tissue can be conceptualized as a flow of chemical energy from energy-rich substrate molecules into energy-expending, endergonic biological work processes through oxidative degradation of organic molecules ingested as nutrients. Despite the relatively tight coupling between metabolic reactions and products, some expended energy is incidentally lost as heat, and in this manner a significant fraction of the energy originally captured from the environment nonproductively transforms into heat rather than into biological work. In human and other mammalian cells, some processes are even completely uncoupled, and therefore purely energy consuming. These molecular and cellular actions sum up at the physiological level to adaptive thermogenesis, the endogenous physiology in which energy is nonproductively released as heat through uncoupling of mitochondria in brown fat and potentially skeletal muscle. Adaptive thermogenesis in mammals occurs in three forms, mostly in skeletal muscle and brown fat: shivering thermogenesis in skeletal muscle, non-shivering thermogenesis in brown fat, and diet-induced thermogenesis in brown fat. At the cellular level, the greatest energy transformations in humans and other eukaryotes occur in the mitochondria, where creating energetic inefficiency by uncoupling the conversion of energy-rich substrate molecules into ATP usable by all three major forms of biological work occurs by two primary means. Basal uncoupling occurs as a passive, general, nonspecific leak down the proton concentration gradient across the membrane in all mitochondria in the human body, a gradient driving a key step in ATP synthesis. Inducible uncoupling, which is the active conduction of protons across gradients through processes catalyzed by proteins, occurs only in select cell types including BAT. Experiments in rodents revealed UCP1 as the primary mammalian molecule accounting for the regulated, inducible uncoupling of BAT, and responsive to both cold and pharmacological stimulation. Cold stimulation of BAT has convincingly translated into humans, and older clinical observations with nonselective 2,4-DNP validate that human BAT’s participation in pharmacologically mediated, though nonselective, mitochondrial membrane decoupling can provide increased energy expenditure and corresponding body weight loss. In recent times, however, neither beta-adrenergic antagonism nor unselective sympathomimetic agonism by ephedrine and sibutramine provide convincing evidence that more BAT-selective mechanisms can impact energy balance and subsequently body weight. Although BAT activity correlates with leanness, hypothesis-driven selective β3-adrenergic agonism to activate BAT in humans has only provided robust proof of pharmacologic activation of β-adrenergic receptor signaling, limited proof of the mechanism of increased adaptive thermogenesis, and no convincing evidence that body weight loss through negative energy balance upon BAT activation can be accomplished outside of rodents. None of the five demonstrably β3 selective molecules with sufficient clinical experience to merit review provided significant weight loss in clinical trials (BRL 26830A, TAK 677, L-796568, CL 316,243, and BRL 35135). Broader conclusions regarding the human BAT therapeutic hypothesis are limited by the absence of data from most studies demonstrating specific activation of BAT thermogenesis in most studies. Additionally, more limited data sets with older or less selective β3 agonists also did not provide strong evidence of body weight effects. Encouragingly, β3-adrenergic agonists, catechins, capsinoids, and nutritional extracts, even without robust negative energy balance outcomes, all demonstrated increased total energy expenditure that in some cases could be associated with concomitant activation of BAT, though the absence of body weight loss indicates that in no cases did the magnitude of negative energy balance reach sufficient levels. Glucocorticoid receptor agonists, PPARg agonists, and thyroid hormone receptor agonists all possess defined molecular and cellular pharmacology that preclinical models predicted to be efficacious for negative energy balance and body weight loss, yet their effects on human BAT thermogenesis upon translation were inconsistent with predictions and disappointing. A few new mechanisms are nearing the stage of clinical trials and may yet provide a more quantitatively robust translation from preclinical to human experience with BAT. In conclusion, translation into humans has been demonstrated with BAT molecular pharmacology and cell biology, as well as with physiological response to cold. However, despite pharmacologically mediated, statistically significant elevation in total energy expenditure, translation into biologically meaningful negative energy balance was not achieved, as indicated by the absence of measurable loss of body weight over the duration of a clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham R, Zed C, Mitchell T, Parr J, Wynn V (1987) The effect of a novel beta-agonist BRL-26830A on weight and protein loss in obese patients. Int J Obes 11(3):A306

    Google Scholar 

  • Agrawal A, Nair N, Baghel N (2009) A novel approach for reduction of brown fat uptake on FDG PET. Br J Radiol 82(980):626–631

    CAS  PubMed  Google Scholar 

  • Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M (2011) Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 65(1):73–80

    PubMed  Google Scholar 

  • Al-Adsani H, Hoffer LJ, Silva JE (1997) Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metabol 82(4):1118–1125

    CAS  Google Scholar 

  • Andersen S, Kleinschmidt K, Hvingel B, Laurberg P (2012) Thyroid hyperactivity with high thyroglobulin in serum despite sufficient iodine intake in chronic cold adaptation in an Arctic Inuit hunter population. Eur J Endocrinol 166(3):433–440

    CAS  PubMed  Google Scholar 

  • Arbeeny CM, Meyers DS, Hillyer DE, Bergquist KE (1995) Metabolic alterations associated with the antidiabetic effect of beta 3-adrenergic receptor agonists in obese mice. Am J Physiol Endocrinol Metab 268(4):E678–E684

    CAS  Google Scholar 

  • Arch JR (2008) The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from β 3-adrenoceptor agonists. Naunyn Schmiedeberg’s Arch Pharmacol 378(2):225

    CAS  Google Scholar 

  • Arch JR (2015) Horizons in the pharmacotherapy of obesity. Curr Obes Rep 4(4):451–459

    PubMed  Google Scholar 

  • Arch J, Ainsworth A (1983) Thermogenic and antiobesity activity of a novel β-adrenoceptor agonist (BRL 26830A) in mice and rats. Am J Clin Nutr 38(4):549–558

    CAS  PubMed  Google Scholar 

  • Arch J, Wilson S (1996) Prospects for beta 3-adrenoceptor agonists in the treatment of obesity and diabetes. Int J Obes Relat Metab Disord 20(3):191–199

    CAS  PubMed  Google Scholar 

  • Arch J, Ainsworth A, Cawthorne M, Piercy V, Sennitt M, Thody V, Wilson C, Wilson S (1984a) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309(5964):163

    CAS  PubMed  Google Scholar 

  • Arch JR, Ainsworth AT, Ellis RD, Piercy V, Thody VE, Thurlby PL, Wilson C, Wilson S, Young P (1984b) Treatment of obesity with thermogenic beta-adrenoceptor agonists: studies on BRL 26830A in rodents. Int J Obes 8(Suppl 1):1–11

    CAS  PubMed  Google Scholar 

  • Arner P, Hoffstedt J (1999) Adrenoceptor genes in human obesity. J Intern Med 245(6):667–672

    CAS  PubMed  Google Scholar 

  • Assimacopoulos-Jeannet F, Greco-Perotto R, Terrettaz J, Meier M, Jeanrenaud B (1992) Effect of a β-adrenergic agonist on glucose transport and insulin-responsive glucose transporters (GLUT4) in brown adipose tissue of control and obese fa/fa rats. Pflugers Arch 421(1):52–58

    CAS  PubMed  Google Scholar 

  • Astrup A (1986) Thermogenesis in human brown adipose tissue and skeletal muscle induced by sympathomimetic stimulation. Acta Endocrinol 112(3 Suppl):S9–S32

    Google Scholar 

  • Astrup A, Bulow J, Madsen J, Christensen N (1985a) Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol Endocrinol Metab 248(5):E507–E515

    CAS  Google Scholar 

  • Astrup A, Lundsgaard C, Madsen J, Christensen NJ (1985b) Enhanced thermogenic responsiveness during chronic ephedrine treatment in man. Am J Clin Nutr 42(1):83–94

    CAS  PubMed  Google Scholar 

  • Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, Niswander L, Conlon RA (2006) β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296(1):164–176

    CAS  PubMed  Google Scholar 

  • Bachman ES, Dhillon H, Zhang C-Y, Cinti S, Bianco AC, Kobilka BK, Lowell BB (2002) βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297(5582):843–845

    CAS  PubMed  Google Scholar 

  • Bailey CJ, Tahrani AA, Barnett AH (2016) Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol 4(4):350–359

    CAS  PubMed  Google Scholar 

  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino J, de Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244–E1253

    CAS  PubMed  Google Scholar 

  • Baskin AS, Linderman JD, Brychta RJ, McGehee S, Anflick-Chames E, Cero C, Johnson JW, O’Mara AE, Fletcher LA, Leitner BP, Duckworth CJ, Huang S, Cai H, Garraffo HM, Millo CM, Dieckmann W, Tolstikov V, Chen EY, Gao F, Narain NR, Kiebish MA, Walter PJ, Herscovitch P, Chen KY, Cypess AM (2018) Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. Diabetes 67(10):2113–2125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bathgate B, Freebairn E, Greenland A, Reid G (1992) Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol Microbiol 6(3):363–370

    CAS  PubMed  Google Scholar 

  • Bianco AC, Silva JE (1988) Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am J Physiol Endocrinol Metab 255(4):E496–E503

    CAS  Google Scholar 

  • Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte ÉE, Carpentier AC, Richard D (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metabol 99(3):E438–E446

    CAS  Google Scholar 

  • Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54(5):1392–1399

    CAS  PubMed  Google Scholar 

  • Boozer C, Daly P, Homel P, Solomon J, Blanchard D, Nasser J, Strauss R, Meredith T (2002) Herbal ephedra/caffeine for weight loss: a 6-month randomized safety and efficacy trial. Int J Obes 26(5):593

    CAS  Google Scholar 

  • Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463

    PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Tremblay A, Després J-P, Nadeau A, Lupien PJ, Thériault G, Dussault J, Moorjani S, Pinault S, Fournier G (1990) The response to long-term overfeeding in identical twins. N Engl J Med 322(21):1477–1482

    CAS  PubMed  Google Scholar 

  • Bray GA, Blackburn GL, Ferguson JM, Greenway FL, Jain AK, Mendel CM, Mendels J, Ryan DH, Schwartz SL, Scheinbaum ML (1999) Sibutramine produces dose-related weight loss. Obes Res 7(2):189–198

    CAS  PubMed  Google Scholar 

  • Broeders EP, Vijgen GH, Havekes B, Bouvy ND, Mottaghy FM, Kars M, Schaper NC, Schrauwen P, Brans B, van Marken Lichtenbelt WD (2016) Thyroid hormone activates brown adipose tissue and increases non-shivering thermogenesis-a cohort study in a group of thyroid carcinoma patients. PLoS One 11(1):e0145049

    PubMed  PubMed Central  Google Scholar 

  • Brunton L, Chabner B, Knollman B (eds) (2011) Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw Hill, New York

    Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    CAS  PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2010) Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes 34(S1):S7

    CAS  Google Scholar 

  • Carey AL, Kingwell BA (2013) Brown adipose tissue in humans: therapeutic potential to combat obesity. Pharmacol Ther 140(1):26–33

    CAS  PubMed  Google Scholar 

  • Carey AL, Formosa MF, van Every B, Bertovic D, Eikelis N, Lambert GW, Kalff V, Duffy SJ, Cherk MH, Kingwell BA (2013) Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 56(1):147–155

    CAS  PubMed  Google Scholar 

  • Carey AL, Vorlander C, Reddy-Luthmoodoo M, Natoli AK, Formosa MF, Bertovic DA, Anderson MJ, Duffy SJ, Kingwell BA (2014) Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One 9(3):e91997

    PubMed  PubMed Central  Google Scholar 

  • Carey AL, Pajtak R, Formosa MF, van Every B, Bertovic DA, Anderson MJ, Eikelis N, Lambert GW, Kalff V, Duffy SJ (2015) Chronic ephedrine administration decreases brown adipose tissue activity in a randomised controlled human trial: implications for obesity. Diabetologia 58(5):1045–1054

    CAS  PubMed  Google Scholar 

  • Cawthorne MA, Sennitt MV, Arch JR, Smith SA (1992) BRL 35135, a potent and selective atypical beta-adrenoceptor agonist. Am J Clin Nutr 55(1 Suppl):252S–257S

    CAS  PubMed  Google Scholar 

  • Cazeneuve P, Lépine R (1885) Sur les effets produits par l’ingestion et l’infusion intra-veineuse de trois colorants jaunes, derives de la houille. Compt Rend Soc Biol 101:1167–1169

    Google Scholar 

  • Chadwick DJ, Cardew G (2008) The origins and consequences of obesity. Wiley, Hoboken

    Google Scholar 

  • Challiss RJ, Leighton B, Wllson S, Thurlby PL, Arch JR (1988) An investigation of the β-adrenoceptor that mediates metabolic responses to the novel agonist BRL28410 in rat soleus muscle. Biochem Pharmacol 37(5):947–950

    CAS  PubMed  Google Scholar 

  • Chapman B, Farquhar D, Galloway S, Simpson G, Munro J (1985) The effects of BRL-26830A, a new beta-adrenoceptor agonist in refractory obesity. Int J Obes 9:230

    Google Scholar 

  • Chapman B, Farquahar D, Galloway S, Simpson G, Munro J (1988) The effects of a new beta-adrenoceptor agonist BRL 26830A in refractory obesity. Int J Obes 12(2):119–123

    CAS  PubMed  Google Scholar 

  • Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, DeFronzo RA, Tripathy D (2009) Circulating fibroblast growth factor-21 (FGF-21) is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32:1542–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J, Schell M, van der Lans A, Schlein C, Froehlich H, Heeren J, Virtanen KA, van Marken Lichtenbelt W, Pfeifer A (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7:11420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen E, Garby L, Sørensen TI (2005) Quantitative analysis of the energy requirements for development of obesity. J Theor Biol 234(1):99–106

    PubMed  Google Scholar 

  • Clapham J, Arch J (2007) Thermogenic and metabolic antiobesity drugs: rationale and opportunities. Diabetes Obes Metab 9(3):259–275

    CAS  PubMed  Google Scholar 

  • Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, Piercy V, Carter SA, Lehner I, Smith SA, Beeley LJ, Godden RJ, Herrity N, Skehel M, Changani KK, Hockings PD, Reid DG, Squires SM, Hatcher J, Trail B, Latcham J, Rastan S, Harper AJ, Cadenas S, Buckingham JA, Brand MD, Abuin A (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406(6794):415–418. https://doi.org/10.1038/35019082

    Article  CAS  PubMed  Google Scholar 

  • Cohade C, Osman M, Pannu HK, Wahl RL (2003a) Uptake in supraclavicular area fat (“USA-Fat”): description on (18)F-FDG PET/CT. J Nucl Med 44(2):170

    CAS  PubMed  Google Scholar 

  • Cohade C, Mourtzikos KA, Wahl RL (2003b) “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 44(8):1267–1270

    PubMed  Google Scholar 

  • Colman E (2007) Dinitrophenol and obesity: an early twentieth-century regulatory dilemma. Regul Toxicol Pharmacol 48(2):115–117

    CAS  PubMed  Google Scholar 

  • Commins SP, Marsh DJ, Thomas SA, Watson PM, Padgett MA, Palmiter R, Gettys TW (1999) Norepinephrine is required for leptin effects on gene expression in brown and white adipose tissue. Endocrinology 140(10):4772–4778

    CAS  PubMed  Google Scholar 

  • Connacher A, Jung R, Mitchell P (1988) Weight loss in obese subjects on a restricted diet given BRL 26830A, a new atypical β adrenoceptor agonist. Br Med J (Clin Res Ed) 296(6631):1217

    CAS  Google Scholar 

  • Connacher A, Lakie M, Powers N, Elton R, Walsh E, Jung R (1990) Tremor and the anti-obesity drug BRL 26830A. Br J Clin Pharmacol 30(4):613–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connacher A, Bennet W, Jung R, Rennie M (1992a) Metabolic effects of three weeks administration of the beta-adrenoceptor agonist BRL 26830A. Int J Obes Relat Metab Disord 16(9):685–694

    CAS  PubMed  Google Scholar 

  • Connacher AA, Bennet WM, Jung RT (1992b) Clinical studies with the β-adrenoceptor agonist BRL 26830A. Oxford University Press, Oxford

    Google Scholar 

  • Contaldo F, Scalfi L, Coltorti A, Lanzilli A (1986) Reduced cold-induced thermogenesis in familial human obesity. Klin Wochenschr 64(4):177–180

    CAS  PubMed  Google Scholar 

  • Cuevas-Ramos D, Almeda-Valdes P, Gómez-Pérez FJ, Meza-Arana CE, Cruz-Bautista I, Arellano-Campos O, Navarrete-López M, Aguilar-Salinas CA (2010) Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. Eur J Endocrinol 163(3):469–477

    CAS  PubMed  Google Scholar 

  • Cunningham S, Leslie P, Hopwood D, Illingworth P, Jung R, Nicholls D, Peden N, Rafael J, Rial E (1985) The characterization and energetic potential of brown adipose tissue in man. Clin Sci 69(3):343–348

    CAS  Google Scholar 

  • Cutting W, Tainter M (1933) Metabolic actions of dinitrophenol: with the use of balanced and unbalanced diets. J Am Med Assoc 101(27):2099–2102

    Google Scholar 

  • Cutting W, Mehrtens H, Tainter M (1933) Actions and uses of dinitrophenol: promising metabolic applications. J Am Med Assoc 101(3):193–195

    CAS  Google Scholar 

  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng Y-H, Doria A (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess AM, Chen Y-C, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR, Kolodny GM (2012) Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci 109(25):10001–10005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21(1):33–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dauncey M (1981) Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermogenesis. Br J Nutr 45(2):257–267

    CAS  PubMed  Google Scholar 

  • de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim S-W, Harney JW, Larsen PR, Bianco AC (2001) The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 108(9):1379–1385

    PubMed  PubMed Central  Google Scholar 

  • de Matteis R, Arch J, Petroni M, Ferrari D, Cinti S, Stock M (2002) Immunohistochemical identification of the β 3-adrenoceptor in intact human adipocytes and ventricular myocardium: effect of obesity and treatment with ephedrine and caffeine. Int J Obes 26(11):1442

    Google Scholar 

  • de Ponti F, Modini C, Gibelli G, Crema F, Frigo G (1999) Atypical β-adrenoceptors mediating relaxation in the human colon: functional evidence for β3-rather than β4-adrenoceptors. Pharmacol Res 39(5):345–348

    PubMed  Google Scholar 

  • Dhar R, Stout CW, Link MS, Homoud MK, Weinstock J, Estes NM III (2005) Cardiovascular toxicities of performance-enhancing substances in sports. Mayo Clin Proc 80:1307–1315

    CAS  PubMed  Google Scholar 

  • Diepvens K, Westerterp KR, Westerterp-Plantenga MS (2007) Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Phys Regul Integr Comp Phys 292(1):R77–R85

    CAS  Google Scholar 

  • Digby JE, Montague CT, Sewter CP, Sanders L, Wilkison WO, O’Rahilly S, Prins JB (1998) Thiazolidinedione exposure increases the expression of uncoupling protein 1 in cultured human preadipocytes. Diabetes 47(1):138–141

    CAS  PubMed  Google Scholar 

  • Dolan JA, Muenkel HA, Burns MG, Pellegrino SM, Fraser CM, Pietri F, Strosberg AD, Largis EE, Dutia MD, Bloom JD (1994) Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. J Pharmacol Exp Ther 269(3):1000–1006

    CAS  PubMed  Google Scholar 

  • Dong JQ, Rossulek M, Somayaji VR, Baltrukonis D, Liang Y, Hudson K, Hernandez-Illas M, Calle RA (2015a) Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol 80(5):1051–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong JQ, Rossulek M, Somayaji VR, Baltrukonis D, Liang Y, Hudson K, Hernandez-Illas M, Calle RA (2015b) Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol 80(5):1051–1063. https://doi.org/10.1111/bcp.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon C, Denis RG, Baraboi ED, Samson P, Lalonde J, Deshaies Y, Richard D (2006) Effects of rimonabant (SR141716) on fasting-induced hypothalamic-pituitary-adrenal axis and neuronal activation in lean and obese Zucker rats. Diabetes 55(12):3403–3410. https://doi.org/10.2337/db06-0504

    Article  CAS  PubMed  Google Scholar 

  • Dulloo A, Seydoux J, Girardier L (1991) Peripheral mechanisms of thermogenesis induced by ephedrine and caffeine in brown adipose tissue. Int J Obes 15(5):317–326

    CAS  PubMed  Google Scholar 

  • Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Pénicaud L, Kristiansen K, Bouloumié A, Casteilla L (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27(11):2753–2760

    CAS  PubMed  Google Scholar 

  • Elmquist JK, Maratos-Flier E, Saper CB, Flier JS (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1(6):445

    CAS  PubMed  Google Scholar 

  • Enerbäck S (2010) Human brown adipose tissue. Cell Metab 11(4):248–252

    PubMed  Google Scholar 

  • Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper M-E, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90

    PubMed  Google Scholar 

  • Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9(2):203–209

    CAS  PubMed  Google Scholar 

  • Ferrannini E, Galvan A, Gastaldelli A, Camastra S, Sironi A, Toschi E, Baldi S, Frascerra S, Monzani F, Antonelli A (1999) Insulin: new roles for an ancient hormone. Eur J Clin Investig 29(10):842–852

    CAS  Google Scholar 

  • Ferré P, Pénicaud L, Hitier Y, Meier M, Girard J (1992) Hypoglycemic effects of a beta-agonist, Ro 16-8714, in streptozotocin-diabetic rats: decreased hepatic glucose production and increased glucose utilization in oxidative muscles. Metabolism 41(2):180–183

    PubMed  Google Scholar 

  • Fletcher DS, Candelore MR, Grujic D, Lowell BB, Luell S, Susulic VS, Macintyre DE (1998) Beta-3 adrenergic receptor agonists cause an increase in gastrointestinal transit time in wild-type mice, but not in mice lacking the beta-3 adrenergic receptor. J Pharmacol Exp Ther 287(2):720–724

    CAS  PubMed  Google Scholar 

  • Foster DO, Frydman ML (1979) Tissue distribution of cold-induced thermogenesis in conscious warm-or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol 57(3):257–270

    CAS  PubMed  Google Scholar 

  • Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18(3):333–340

    CAS  PubMed  Google Scholar 

  • Galgani JE, Ravussin E (2010) Effect of dihydrocapsiate on resting metabolic rate in humans. Am J Clin Nutr 92(5):1089–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Escuredo J, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G, Villarroya F (2015) Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes 39(1):121

    CAS  Google Scholar 

  • Garcia CA, van Nostrand D, Atkins F, Acio E, Butler C, Esposito G, Kulkarni K, Majd M (2006) Reduction of brown fat 2-deoxy-2-[F-18] fluoro-D-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 8(1):24–29

    PubMed  Google Scholar 

  • Gavrila A, Hasselgren P-O, Glasgow A, Doyle AN, Lee AJ, Fox P, Gautam S, Hennessey JV, Kolodny GM, Cypess AM (2017) Variable cold-induced brown adipose tissue response to thyroid hormone status. Thyroid 27(1):1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • George A, Sinha P, Conrad G, Memon AA, Dressler EV, Wagner LM (2017) Pilot study of propranolol premedication to reduce FDG uptake in brown adipose tissue on PET scans of adolescent and young adult oncology patients. Pediatr Hematol Oncol 34(3):136–143

    CAS  Google Scholar 

  • Ghorbani M, Claus TH, Himms-Hagen J (1997) Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a β3-adrenoceptor agonist. Biochem Pharmacol 54(1):121–131

    CAS  PubMed  Google Scholar 

  • Giese J (1996) Olestra: properties, regulatory concerns, and applications. Food Technol 50(3):86

    Google Scholar 

  • Gimeno RE, Moller DE (2014) FGF21-based pharmacotherapy–potential utility for metabolic disorders. Trends Endocrinol Metab 25(6):303–311

    CAS  PubMed  Google Scholar 

  • Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A, Hoffmann LS, Reverte-Salisa L, Horn P, Mutlu S, El-Tayeb A, Kranz M, Deuther-Conrad W, Brust P, Lidell ME, Betz MJ, Enerbäck S, Schrader J, Yegutkin GG, Müller CE, Pfeifer A (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516(7531):395–399

    CAS  PubMed  Google Scholar 

  • Goglia F, Silvestri E, Lanni A (2002) Thyroid hormones and mitochondria. Biosci Rep 22(1):17–32

    CAS  PubMed  Google Scholar 

  • Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15(11):2048–2050

    CAS  PubMed  Google Scholar 

  • Golozoubova V, Gullberg H, Matthias A, Cannon B, Vennström B, Nedergaard J (2004) Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors. Mol Endocrinol 18(2):384–401

    CAS  PubMed  Google Scholar 

  • Golozoubova V, Cannon B, Nedergaard J (2006) UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Endocrinol Metab 291(2):E350–E357

    CAS  PubMed  Google Scholar 

  • Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunningham BA, Corkey BE, Lowell BB (1997) Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272(28):17686–17693

    CAS  PubMed  Google Scholar 

  • Guerra C, Roncero C, Porras A, Fernández M, Benito M (1996) Triiodothyronine induces the transcription of the uncoupling protein gene and stabilizes its mRNA in fetal rat brown adipocyte primary cultures. J Biol Chem 271(4):2076–2081

    CAS  PubMed  Google Scholar 

  • Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998) Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102(2):412–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson B, Hammarstedt A, Hedjazifar S, Hoffmann JM, Svensson P-A, Grimsby J, Rondinone C, Smith U (2015) BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes 64(5):1670–1681

    CAS  PubMed  Google Scholar 

  • Hafner RP, Brown GC, Brand MD (1990) Thyroid-hormone control of state-3 respiration in isolated rat liver mitochondria. Biochem J 265(3):731–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378(9793):826–837

    PubMed  Google Scholar 

  • Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29(10):1393–1398

    PubMed  Google Scholar 

  • Harper M-E, Himms-Hagen J (2001) Mitochondrial efficiency: lessons learned from transgenic mice. Biochim Biophys Acta 1504(1):159–172

    CAS  PubMed  Google Scholar 

  • Harper J, Dickinson K, Brand M (2001) Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes Rev 2(4):255–265

    CAS  PubMed  Google Scholar 

  • Harper JA, Stuart JA, Jekabsons MB, Roussel D, Brindle KM, Dickinson K, Jones RB, Brand MD (2002) Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochem J 361(1):49–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harper M-E, Green K, Brand MD (2008) The efficiency of cellular energy transduction and its implications for obesity. Annu Rev Nutr 28:13–33

    CAS  PubMed  Google Scholar 

  • Harris RB (2000) Leptin – much more than a satiety signal. Annu Rev Nutr 20(1):45–75

    CAS  PubMed  Google Scholar 

  • Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112(Pt 1):35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton GM, Wagenvoord RJ, Kemp A Jr, Nicholls DG (1978) Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82(2):515–521

    CAS  PubMed  Google Scholar 

  • Himms-Hagen J (1979) Obesity may be due to a malfunctioning of brown fat. Can Med Assoc J 121(10):1361–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Himms-Hagen J (1989) Brown adipose tissue thermogenesis and obesity. Prog Lipid Res 28(2):67–115

    CAS  PubMed  Google Scholar 

  • Himms-Hagen J (2004) Exercise in a pill: feasibility of energy expenditure targets. Curr Drug Targets CNS Neurol Disord 3(5):389–409

    CAS  PubMed  Google Scholar 

  • Himms-Hagen J, Cui J, Danforth E Jr, Taatjes D, Lang S, Waters B, Claus T (1994) Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Phys Regul Integr Comp Phys 266(4):R1371–R1382

    CAS  Google Scholar 

  • Hoffstedt J, Poirier O, Thorne A, Lonnqvist F, Herrmann SM, Cambien F, Arner P (1999) Polymorphism of the human [[Beta]. sub. 3]-adrenoceptor gene forms a well-conserved haplotype that is associated with moderate obesity and altered receptor function. Diabetes 48(1):203–204

    CAS  PubMed  Google Scholar 

  • Hosaka T, Biggs WH, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci 101(9):2975–2980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z-L, Qu W-M, Eguchi N, Chen J-F, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A 2A, but not A 1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8(7):858

    CAS  PubMed  Google Scholar 

  • Imai T, Takakuwa R, Marchand S, Dentz E, Bornert J-M, Messaddeq N, Wendling O, Mark M, Desvergne B, Wahli W (2004) Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci 101(13):4543–4547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inokuma K, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita H, Saito M (2005) Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes 54(5):1385–1391

    CAS  PubMed  Google Scholar 

  • Inoue N, Matsunaga Y, Satoh H, Takahashi M (2007) Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci Biotechnol Biochem 71(2):380–389

    CAS  PubMed  Google Scholar 

  • Isler D, Hill H-P, Meier MK (1987) Glucose metabolism in isolated brown adipocytes under β-adrenergic stimulation. Quantitative contribution of glucose to total thermogenesis. Biochem J 245(3):789–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwami M, Mahmoud FA, Shiina T, Hirayama H, Shima T, Sugita J, Shimizu Y (2011) Extract of grains of paradise and its active principle 6-paradol trigger thermogenesis of brown adipose tissue in rats. Auton Neurosci 161(1–2):63–67

    CAS  PubMed  Google Scholar 

  • Iwen KA, Backhaus J, Cassens M, Waltl M, Hedesan OC, Merkel M, Heeren J, Sina C, Rademacher L, Windjäger A (2017) Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metabol 102(11):4226–4234

    Google Scholar 

  • James WPT, Astrup A, Finer N, Hilsted J, Kopelman P, Rössner S, Saris WH, van Gaal LF, Group SS (2000) Effect of sibutramine on weight maintenance after weight loss: a randomised trial. Lancet 356(9248):2119–2125

    CAS  PubMed  Google Scholar 

  • James WPT, Caterson ID, Coutinho W, Finer N, van Gaal LF, Maggioni AP, Torp-Pedersen C, Sharma AM, Shepherd GM, Rode RA (2010) Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med 363(10):905–917

    CAS  PubMed  Google Scholar 

  • Jequier E, Munger R, Felber J (1992) Thermogenic effects of various β-adrenoceptor agonists in humans: their potential usefulness in the treatment of obesity. Oxford University Press, Oxford

    Google Scholar 

  • Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17(5):798–805

    CAS  PubMed  Google Scholar 

  • Jessen K, Rabøl A, Winkler K (1980) Total body and splanchnic thermogenesis in curarized man during a short exposure to cold. Acta Anaesthesiol Scand 24(4):339–344

    CAS  PubMed  Google Scholar 

  • Jezek P, Orosz DE, Garlid K (1990) Reconstitution of the uncoupling protein of brown adipose tissue mitochondria. Demonstration of GDP-sensitive halide anion uniport. J Biol Chem 265(31):19296–19302

    CAS  PubMed  Google Scholar 

  • Joint F (2001) Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation, Rome, 17–24 Oct 2001–2004

    Google Scholar 

  • Joy RJ (1963) Responses of cold-acclimatized men to infused norepinephrine. J Appl Physiol 18(6):1209–1212

    CAS  PubMed  Google Scholar 

  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM (2009) Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature 460(7259):1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar SS, Shrago E (1989) Reconstitution of purified brown adipose tissue mitochondria uncoupling protein: demonstration of separate identity of nucleotide binding and proton translocation sites by chemical probes. Proc Natl Acad Sci 86(8):2559–2562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata F, Inoue N, Yazawa S, Kawada T, Inoue K, Fushiki T (2006) Effects of CH-19 sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci Biotechnol Biochem 70(12):2824–2835

    CAS  PubMed  Google Scholar 

  • Kawabata F, Inoue N, Masamoto Y, Matsumura S, Kimura W, Kadowaki M, Higashi T, Tominaga M, Inoue K, Fushiki T (2009) Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice. Biosci Biotechnol Biochem 73(12):2690–2697

    CAS  PubMed  Google Scholar 

  • Kawada T, Hagihara K-I, Iwai K (1986a) Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 116(7):1272–1278

    CAS  PubMed  Google Scholar 

  • Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K (1986b) Capsaicin-induced β-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med 183(2):250–256

    CAS  PubMed  Google Scholar 

  • Kern PA, Finlin BS, Zhu B, Rasouli N, McGehee RE Jr, Westgate PM, Dupont-Versteegden EE (2014) The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J Clin Endocrinol Metabol 99(12):E2772–E2779

    CAS  Google Scholar 

  • Kharitonenkov A, DiMarchi R (2015) FGF21 Revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol Metab 26(11):608–617

    Google Scholar 

  • Kim S, Krynyckyi BR, Machac J, Kim CK (2008) Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging 35(5):984–989

    PubMed  Google Scholar 

  • Kim MS, Hu HH, Aggabao PC, Geffner ME, Gilsanz V (2014) Presence of brown adipose tissue in an adolescent with severe primary hypothyroidism. J Clin Endocrinol Metabol 99(9):E1686–E1690

    CAS  Google Scholar 

  • Klein S, Wolfe R (1990) Whole-body lipolysis and triglyceride-fatty acid cycling in cachectic patients with esophageal cancer. J Clin Invest 86(5):1403–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobata K, Todo T, Yazawa S, Iwai K, Watanabe T (1998) Novel capsaicinoid-like substances, capsiate and dihydrocapsiate, from the fruits of a nonpungent cultivar, CH-19 Sweet, of pepper (Capsicum annuum L.). J Agric Food Chem 46(5):1695–1697

    CAS  Google Scholar 

  • Kontani Y, Wang Y, Kimura K, Inokuma KI, Saito M, Suzuki-Miura T, Wang Z, Sato Y, Mori N, Yamashita H (2005) UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell 4(3):147–155

    CAS  PubMed  Google Scholar 

  • Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak LP (1995) Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 96(6):2914–2923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krief S, Lönnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 91(1):344–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusirisin W, Srichairatanakool S, Lerttrakarnnon P, Lailerd N, Suttajit M, Jaikang C, Chaiyasut C (2009) Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med Chem 5(2):139–147

    CAS  PubMed  Google Scholar 

  • Lahesmaa M, Orava J, Schalin-Jäntti C, Soinio M, Hannukainen JC, Noponen T, Kirjavainen A, Iida H, Kudomi N, Enerbäck S (2014) Hyperthyroidism increases brown fat metabolism in humans. J Clin Endocrinol Metabol 99(1):E28–E35

    Google Scholar 

  • Landsberg L, Saville ME, Young JB (1984) Sympathoadrenal system and regulation of thermogenesis. Am J Physiol Endocrinol Metab 247(2):E181–E189

    CAS  Google Scholar 

  • Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WH, Astrup A (2002) Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 76(4):780–788

    CAS  PubMed  Google Scholar 

  • Lean M, James W, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci (Lond) 71(3):291–297

    CAS  Google Scholar 

  • Lee P, Greenfield JR, Ho KK, Fulham MJ (2010a) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299(4):E601–E606

    CAS  PubMed  Google Scholar 

  • Lee TA, Li Z, Zerlin A, Heber D (2010b) Effects of dihydrocapsiate on adaptive and diet-induced thermogenesis with a high protein very low calorie diet: a randomized control trial. Nutr Metab 7(1):78

    Google Scholar 

  • Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR, Freund J, Ho KK (2011a) High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metabol 96(8):2450–2455

    CAS  Google Scholar 

  • Lee J-Y, Takahashi N, Yasubuchi M, Kim Y-I, Hashizaki H, Kim M-J, Sakamoto T, Goto T, Kawada T (2011b) Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am J Phys Cell Phys 302(2):C463–C472

    Google Scholar 

  • Lehninger AH (1971) Bioenergetics. Benjamin Cummings Publishing Group, San Francisco

    Google Scholar 

  • Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332(10):621–628

    CAS  PubMed  Google Scholar 

  • Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J, So P-W, Medina-Gomez G, Vidal-Puig A, White R (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci 101(22):8437–8442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie WS, Hankey CR, Lean ME (2007) Weight gain as an adverse effect of some commonly prescribed drugs: a systematic review. Int J Med 100(7):395–404

    CAS  Google Scholar 

  • Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283(5399):212–214

    CAS  PubMed  Google Scholar 

  • Li B, Nolte LA, Ju J-S, Han DH, Coleman T, Holloszy JO, Semenkovich CF (2000) Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat Med 6(10):1115

    CAS  PubMed  Google Scholar 

  • Li S, Li Y, Xiang L, Dong J, Liu M, Xiang G (2018) Sildenafil induces browning of subcutaneous white adipose tissue in overweight adults. Metabolism 78:106–117

    CAS  PubMed  Google Scholar 

  • Lin C, Hackenberg H, Klingenberg E (1980) The uncoupling protein from brown adipose tissue mitochondria is a dimer. A hydrodynamic study. FEBS Lett 113(2):304–306

    CAS  PubMed  Google Scholar 

  • Loh RKC, Formosa MF, Eikelis N, Bertovic DA, Anderson MJ, Barwood SA, Nanayakkara S, Cohen ND, La Gerche A, Reutens AT, Yap KS, Barber TW, Lambert GW, Cherk MH, Duffy SJ, Kingwell BA, Carey AL (2018) Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes: a randomised, controlled trial in humans. Diabetologia 61(1):220–230

    CAS  PubMed  Google Scholar 

  • López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16(9):1001

    PubMed  PubMed Central  Google Scholar 

  • Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404(6778):652

    CAS  PubMed  Google Scholar 

  • Lowell BB, Vedrana S, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366(6457):740

    CAS  PubMed  Google Scholar 

  • Luo X-J, Peng J, Li Y-J (2011) Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol 650(1):1–7

    CAS  PubMed  Google Scholar 

  • Luque CA, Rey JA (2002) The discovery and status of sibutramine as an anti-obesity drug. Eur J Pharmacol 440(2–3):119–128

    CAS  PubMed  Google Scholar 

  • Maes HH, Neale MC, Eaves LJ (1997) Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 27(4):325–351

    CAS  PubMed  Google Scholar 

  • Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562

    CAS  PubMed  Google Scholar 

  • Magne H, Mayer A, Plantefol L (1932) Etudes sur l’action du dinitrophenol 1-2-4 (thermol). Ann de Physiol 8:70

    CAS  Google Scholar 

  • Malchow-Møller A, Larsen S, Hey H, Stokholm KH, Juhl E, Quaade F (1981) Ephedrine as an anorectic: the story of the ‘Elsinore pill’. Int J Obes 5(2):183–187

    PubMed  Google Scholar 

  • Manara L, Croci T, Aureggi G, Guagnini F, Maffrand J, Le Fur G, Mukenge S, Ferla G (2000) Functional assessment of β adrenoceptor subtypes in human colonic circular and longitudinal (taenia coli) smooth muscle. Gut 47(3):337–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marette A, Bukowiecki LJ (1991) Noradrenaline stimulates glucose transport in rat brown adipocytes by activating thermogenesis. Evidence that fatty acid activation of mitochondrial respiration enhances glucose transport. Biochem J 277(1):119–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda Y, Haramizu S, Oki K, Ohnuki K, Watanabe T, Yazawa S, Kawada T, Hashizume S-i, Fushiki T (2003) Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol 95(6):2408–2415

    CAS  PubMed  Google Scholar 

  • Mathvink RJ, Tolman JS, Chitty D, Candelore MR, Cascieri MA, Colwell LF, Deng L, Feeney WP, Forrest MJ, Hom GJ (2000) Discovery of a potent, orally bioavailable β3 adrenergic receptor agonist,(R)-N-[4-[2-[[2-hydroxy-2-(3-pyridinyl) ethyl] amino] ethyl] phenyl]-4-[4-[4-(trifluoromethyl) phenyl] thiazol-2-yl] benzenesulfonamide. J Med Chem 43(21):3832–3836

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Miyawaki C, Ue H, Kanda T, Yoshitake Y, Moritani T (2001) Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women. Obes Res 9(2):78–85. https://doi.org/10.1038/oby.2001.10

    Article  CAS  PubMed  Google Scholar 

  • Matsushita M, Yoneshiro T, Aita S, Kamiya T, Kusaba N, Yamaguchi K, Takagaki K, Kameya T, Sugie H, Saito M (2015) Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue. J Nutr Sci Vitaminol 61(1):79–83

    CAS  PubMed  Google Scholar 

  • Mazzucotelli A, Viguerie N, Tiraby C, Annicotte J-S, Mairal A, Klimcakova E, Lepin E, Delmar P, Dejean S, Tavernier G (2007) The transcriptional coactivator peroxisome proliferator–activated receptor (PPAR) γ coactivator-1α and the nuclear receptor PPARα control the expression of glycerol kinase and metabolism genes independently of PPARγ activation in human white adipocytes. Diabetes 56(10):2467–2475

    CAS  PubMed  Google Scholar 

  • Melnyk A, Harper M, Himms-Hagen J (1997) Raising at thermoneutrality prevents obesity and hyperphagia in BAT-ablated transgenic mice. Am J Phys Regul Integr Comp Phys 272(4):R1088–R1093

    CAS  Google Scholar 

  • Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO (1990) A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 51(2):241–247

    CAS  PubMed  Google Scholar 

  • Mistry AM, Swick AG, Romsos DR (1997) Leptin rapidly lowers food intake and elevates metabolic rates in lean and Ob/Ob mice. J Nutr 127(10):2065–2072

    CAS  PubMed  Google Scholar 

  • Mitchell T, Ellis R, Smith S, Robb G, Cawthorne M (1989) Effects of BRL 35135, a beta-adrenoceptor agonist with novel selectivity, on glucose tolerance and insulin sensitivity in obese subjects. Int J Obes 13(6):757–766

    CAS  PubMed  Google Scholar 

  • Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K, Mayer P, Haas B, Sassmann A, Pfeifer A, Kilić A (2013) Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J 27(4):1621–1630

    CAS  PubMed  Google Scholar 

  • Møller N, Nielsen S, Nyholm B, Pørksen N, George K, Alberti M, Weeke J (1996) Glucose turnover, fuel oxidation and forearm substrate exchange in patients with thyrotoxicosis before and after medical treatment. Clin Endocrinol 44(4):453–459

    Google Scholar 

  • Morera E, de Petrocellis L, Morera L, Moriello AS, Nalli M, di Marzo V, Ortar G (2012) Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators. Bioorg Med Chem Lett 22(4):1674–1677

    CAS  PubMed  Google Scholar 

  • Morrison SF, Nakamura K, Madden CJ (2008) Central control of thermogenesis in mammals. Exp Physiol 93(7):773–797

    PubMed  PubMed Central  Google Scholar 

  • Munro J, Chapman B, Robb G, Zed C (1987) Clinical studies with thermogenic drugs. Recent Adv Obesity Res

    Google Scholar 

  • Muzik O, Mangner TJ, Granneman JG (2012) Assessment of oxidative metabolism in brown fat using PET imaging. Front Endocrinol 3:15

    CAS  Google Scholar 

  • Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Phys Regul Integr Comp Phys 301(5):R1207–R1R28

    CAS  Google Scholar 

  • Nakamura K, Morrison SF (2007) Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Phys Regul Integr Comp Phys 292(1):R127–R136

    CAS  Google Scholar 

  • Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504(1):82–106

    CAS  PubMed  Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):E444–E452

    CAS  PubMed  Google Scholar 

  • Nedergaard J, Feldmann H, Cannon B (2010) Brown adipose tissue is essential for diet-induced thermogenesis: the absence of Ucp1 makes the obesity-resistant 129sv mouse obesity-prone, due to lack of adaptive adrenergic thermogenesis: T1: po. 06. Obes Rev 11:92

    Google Scholar 

  • Neumann RO (1902) Experimentelle beiträge zur lehre von dem täglichen nahrungsbedarf des menschen unter besonderer berück-sichtigung der notwendigen eiweissmenge. Arch Hyg (Berl) 45:1

    CAS  Google Scholar 

  • Newsholme E, Crabtree B (1976) Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp 41:61–109

    CAS  Google Scholar 

  • Nicholls DG (1976) Hamster brown-adipose-tissue mitochondria: purine nucleotide control of the ion conductance of the inner membrane, the nature of the nucleotide binding site. Eur J Biochem 62(2):223–228

    CAS  PubMed  Google Scholar 

  • Nicholls DG (1977) The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue: dependency on proton electrochemical potential gradient. Eur J Biochem 77(2):349–356

    CAS  PubMed  Google Scholar 

  • Nicholls DG (1979) Brown adipose tissue mitochondria. Biochim Biophys Acta 549(1):1–29

    CAS  PubMed  Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64(1):1–64

    CAS  PubMed  Google Scholar 

  • Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31(5):399–406

    CAS  PubMed  Google Scholar 

  • Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T (2001a) Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 65(12):2735–2740

    CAS  PubMed  Google Scholar 

  • Ohnuki K, Niwa S, Maeda S, Inoue N, Yazawa S, Fushiki T (2001b) CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans. Biosci Biotechnol Biochem 65(9):2033–2036

    CAS  PubMed  Google Scholar 

  • Ono K, Tsukamoto-Yasui M, Hara-Kimura Y, Inoue N, Nogusa Y, Okabe Y, Nagashima K, Kato F (2010) Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses. J Appl Physiol 110(3):789–798

    PubMed  Google Scholar 

  • Ooijen AMC, Westerterp KR, Wouters L, Schoffelen PF, van Steenhoven AA, van Lichtenbelt WDM (2006) Heat production and body temperature during cooling and rewarming in overweight and lean men. Obesity 14(11):1914–1920

    Google Scholar 

  • Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14(2):272–279

    CAS  PubMed  Google Scholar 

  • Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, Richard D (2011) Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metabol 96(1):192–199

    CAS  Google Scholar 

  • Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122(2):545–552

    PubMed  PubMed Central  Google Scholar 

  • Padwal RS, Majumdar SR (2007) Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369(9555):71–77

    CAS  PubMed  Google Scholar 

  • Pagotto U, Vanuzzo D, Vicennati V, Pasquali R (2008) Pharmacological therapy of obesity. G Ital Cardiol (Rome) 9(4 Suppl 1):83s–93s

    Google Scholar 

  • Parascandola J (1974) Dinitrophenol and bioenergetics: an historical perspective. Mol Cell Biochem 5(1–2):69–77

    CAS  PubMed  Google Scholar 

  • Parysow O, Mollerach AM, Jager V, Racioppi S, San Roman J, Gerbaudo VH (2007) Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med 32(5):351–357

    PubMed  Google Scholar 

  • Pasquali R, Baraldi G, Cesari M, Melchionda N, Zamboni M, Stefanini C, Raitano A (1985) A controlled trial using ephedrine in the treatment of obesity. Int J Obes 9(2):93–98

    CAS  PubMed  Google Scholar 

  • Pecqueur C, Alves-Guerra M-C, Gelly C, Lévi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B (2000) Uncoupling protein 2: in vivo distribution, induction upon oxidative stress and evidence for translational regulation. J Biol Chem 276:8705–8712

    PubMed  Google Scholar 

  • Peterson CM, Lecoultre V, Frost EA, Simmons J, Redman LM, Ravussin E (2016) The thermogenic responses to overfeeding and cold are differentially regulated. Obesity (Silver Spring) 24(1):96–101. https://doi.org/10.1002/oby.21233

    Article  Google Scholar 

  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164

    CAS  PubMed  Google Scholar 

  • Poehlman ET (1989) A review: exercise and its influence on resting energy metabolism in man. Med Sci Sports Exerc 21(5):515–525

    CAS  PubMed  Google Scholar 

  • Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, van Beek EJ, Morton NM, Walker BR, Stimson RH (2016) Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 24(1):130–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randle P, Garland P, Hales C, Newsholme E (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281(7285):785–789

    Google Scholar 

  • Ravussin E, Kozak L (2009) Have we entered the brown adipose tissue renaissance? Obes Rev 10(3):265–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C (1988) Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 318(8):467–472

    CAS  PubMed  Google Scholar 

  • Ravussin Y, Xiao C, Gavrilova O, Reitman ML (2014) Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice. PLoS One 9(1):e85876

    PubMed  PubMed Central  Google Scholar 

  • Redman LM, de Jonge L, Fang X, Gamlin B, Recker D, Greenway FL, Smith SR, Ravussin E (2006) Lack of an effect of a novel β3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: a double-blind, placebo-controlled randomized study. J Clin Endocrinol Metabol 92(2):527–531

    Google Scholar 

  • Redman LM, Heilbronn LK, Martin CK, de Jonge L, Williamson DA, Delany JP, Ravussin E (2009) Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS One 4(2):e4377

    PubMed  PubMed Central  Google Scholar 

  • Reitman ML (2013) FGF21 mimetic shows therapeutic promise. Cell Metab 18(3):307–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard D, Picard F (2011) Brown fat biology and thermogenesis. Front Biosci 16:1233–1260

    CAS  Google Scholar 

  • Ricquier D, Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345(2):161–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riera C, Menozzi-Smarrito C, Affolter M, Michlig S, Munari C, Robert F, Vogel H, Simon S, Le Coutre J (2009) Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. Br J Pharmacol 157(8):1398–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts-Toler C, O’Neill BT, Cypess AM (2015) Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring) 23(9):1765–1770

    CAS  Google Scholar 

  • Robidoux J, Martin TL, Collins S (2004) β-Adrenergic receptors and regulation of energy expenditure: a family affair. Annu Rev Pharmacol Toxicol 44:297–323

    CAS  PubMed  Google Scholar 

  • Rodgers RJ, Tschöp MH, Wilding JP (2012) Anti-obesity drugs: past, present and future. Dis Model Mech 5(5):621–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolfe D, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol Cell Physiol 271(4):C1380–C1389

    CAS  Google Scholar 

  • Rolfe D, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758

    CAS  PubMed  Google Scholar 

  • Rolfe DF, Hulbert A, Brand MD (1994) Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim Biophys Acta 1188(3):405–416

    PubMed  Google Scholar 

  • Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol Cell Physiol 276(3):C692–C699

    CAS  Google Scholar 

  • Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, Gallagher D, Mayer L, Murphy E, Leibel RL (2005) Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 115(12):3579–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell NJ, Stock MJ (1979a) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281(5726):31

    CAS  PubMed  Google Scholar 

  • Rothwell NJ, Stock MJ (1979b) Regulation of energy balance in two models of reversible obesity in the rat. J Comp Physiol Psychol 93(6):1024

    CAS  PubMed  Google Scholar 

  • Rothwell N, Stock M (1983) Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci 64(1):19–23

    CAS  Google Scholar 

  • Rothwell N, Stock M (1987) Influence of clenbuterol on energy balance, thermogenesis and body composition in lean and genetically obese Zucker rats. Int J Obes 11(6):641–647

    CAS  PubMed  Google Scholar 

  • Rousseau C, Bourbouloux E, Campion L, Fleury N, Bridji B, Chatal J, Resche I, Campone M (2006) Brown fat in breast cancer patients: analysis of serial 18F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging 33(7):785–791

    CAS  PubMed  Google Scholar 

  • Ruan CC, Kong LR, Chen XH, Ma Y, Pan XX, Zhang ZB, Gao PJ (2018) A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab 28(3):476–489

    CAS  PubMed  Google Scholar 

  • Rujjanawate C, Kanjanapothi D, Amornlerdpison D, Pojanagaroon S (2005) Anti-gastric ulcer effect of Kaempferia parviflora. J Ethnopharmacol 102(1):120–122

    CAS  PubMed  Google Scholar 

  • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531. https://doi.org/10.2337/db09-0530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schöder H, Larson SM, Yeung HW (2004) PET/CT in oncology: integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 45(1 suppl):72S–81S

    PubMed  Google Scholar 

  • Scotney H, Symonds ME, Law J, Budge H, Sharkey D, Manolopoulos KN (2017) Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. Metabolism 70:125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon JR, Gottesdiener K, Jordan J, Kong C, Flattery S, Larson PJ, Candelore MR, Gertz B, Robertson D, Ming S (1999) Acute effect of ephedrine on 24-h energy balance. Clin Sci 96(5):483–491

    CAS  Google Scholar 

  • Shaw WN, Schmiegel KK, Yen TT, Toomey RE, Meyers DB, Mills J (1981) LY79771: a novel compound for weight control. Life Sci 29(20):2091–2101

    CAS  PubMed  Google Scholar 

  • Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA, Suttorp MJ, Rhodes SL, Jungvig L, Gagné J (2003) Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA 289(12):1537–1545

    CAS  PubMed  Google Scholar 

  • Shimada T, Horikawa T, Ikeya Y, Matsuo H, Kinoshita K, Taguchi T, Ichinose K, Takahashi K, Aburada M (2011) Preventive effect of Kaempferia parviflora ethyl acetate extract and its major components polymethoxyflavonoid on metabolic diseases. Fitoterapia 82(8):1272–1278

    CAS  PubMed  Google Scholar 

  • Shintaku K, Uchida K, Suzuki Y, Zhou Y, Fushiki T, Watanabe T, Yazawa S, Tominaga M (2012) Activation of transient receptor potential A1 by a non-pungent capsaicin-like compound, capsiate. Br J Pharmacol 165(5):1476–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22(2):219–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JE (2006) Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86(2):435–464

    CAS  PubMed  Google Scholar 

  • Silva JE, Bianco SD (2008) Thyroid–adrenergic interactions: physiological and clinical implications. Thyroid 18(2):157–165

    CAS  PubMed  Google Scholar 

  • Sjostrom L, Schutz Y, Gudinchet F, Hegnell L, Pittet P, Jequier E (1983) Epinephrine sensitivity with respect to metabolic rate and other variables in women. Am J Physiol Endocrinol Metab 245(5):E431–E442

    CAS  Google Scholar 

  • Sjöström L, Rissanen A, Andersen T, Boldrin M, Golay A, Koppeschaar HP, Krempf M, Group EMOS (1998) Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet 352(9123):167–172

    PubMed  Google Scholar 

  • Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, Cochran C, Solomon J, Chen C, Gorden P (2010) Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metabol 95(1):256–262

    CAS  Google Scholar 

  • Smith S, Cawthorne M, Fay L, McCullough D, Mitchell T (1987) Effect of a novel-adrenoceptor agonist on insulin sensitivity in lean healthy male volunteers. Diabetes 36(Suppl 1):15A

    Google Scholar 

  • Smith S, Zed C, McCullough D, Harris G, Cawthorne M (1989) Thermogenic activity in man of BRL 35135: a potent and selective atypical β-adrenoceptor agonist. Int J Obes 13(suppl 1):33

    Google Scholar 

  • Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y, Sato H, Takahashi M (2008) Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 89(1):45–50

    PubMed  PubMed Central  Google Scholar 

  • Söderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34(7):1018–1022

    PubMed  Google Scholar 

  • Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng Y-H (2012) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123(1):215–223

    PubMed  PubMed Central  Google Scholar 

  • Stowell KM (2008) Malignant hyperthermia: a pharmacogenetic disorder. Pharmacogenomics 9:1657–1672

    CAS  PubMed  Google Scholar 

  • Strieleman PJ, Schalinske KL, Shrago E (1985) Fatty acid activation of the reconstituted brown adipose tissue mitochondria uncoupling protein. J Biol Chem 260(25):13402–13405

    CAS  PubMed  Google Scholar 

  • Strosberg AD, Pietri-Rouxel F (1996) Function and regulation of the β3-adrenoceptor. Trends Pharmacol Sci 17(10):373–381

    CAS  PubMed  Google Scholar 

  • Sugita J, Yoneshiro T, Hatano T, Aita S, Ikemoto T, Uchiwa H, Iwanaga T, Kameya T, Kawai Y, Saito M (2013) Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men. Br J Nutr 110(4):733–738

    CAS  PubMed  Google Scholar 

  • Sugita J, Yoneshiro T, Sugishima Y, Ikemoto T, Uchiwa H, Suzuki I, Saito M (2014) Daily ingestion of grains of paradise (Aframomum melegueta) extract increases whole-body energy expenditure and decreases visceral fat in humans. J Nutr Sci Vitaminol 60(1):22–27

    CAS  PubMed  Google Scholar 

  • Yoo HS, Qiao L, Bosco C, Leong L-H, Lytle N, Feng G-S, Chi N-W, Shao J (2014) Intermittent cold exposure enhances fat accumulation in mice. PLoS One 9(5):e96432

    PubMed  PubMed Central  Google Scholar 

  • Tai T-AC, Jennermann C, Brown KK, Oliver BB, MacGinnitie MA, Wilkison WO, Brown HR, Lehmann JM, Kliewer SA, Morris DC (1996) Activation of the nuclear receptor peroxisome proliferator-activated receptor γ promotes brown adipocyte differentiation. J Biol Chem 271(47):29909–29914

    CAS  PubMed  Google Scholar 

  • Tainter ML, Cutting WC, Stockton A (1934) Use of dinitrophenol in nutritional disorders: a critical survey of clinical results. Am J Public Health Nat Health 24(10):1045–1053

    CAS  Google Scholar 

  • Tajino K, Hosokawa H, Maegawa S, Matsumura K, Dhaka A, Kobayashi S (2011) Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling. PLoS One 6(3):e17504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talukdar S, Zhou Y, Li D, Rossulek M, Dong J, Somayaji V, Weng Y, Clark R, Lanba A, Owen BM, Brenner MB, Trimmer JK, Gropp KE, Chabot JR, Erion DM, Rolph TP, Goodwin B, Calle RA (2016) A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab 23(3):427–440. https://doi.org/10.1016/j.cmet.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  • Tata J, Ernster L, Lindberg O (1962) Control of basal metabolic rate by thyroid hormones and cellular function. Nature 193(4820):1058–1060

    CAS  PubMed  Google Scholar 

  • Tatsumi M, Engles JM, Ishimori T, Cohade C, Wahl RL (2004) Intense 18F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med 45(7):1189–1193

    CAS  PubMed  Google Scholar 

  • Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K (2007) Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci 104(11):4401–4406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toubro S, Astrup A, Hardmann M (1993) A double-blind randomized 14 day trial of the effect of the β-3 agonist ICI D-7114 on 24 h energy expenditure and substrate oxidation in adipose patients. Int J Obes 17:S73

    Google Scholar 

  • Trayhurn P, Thurlby P, James W (1977) Thermogenic defect in pre-obese Ob/Ob mice. Nature 266(5597):60

    CAS  PubMed  Google Scholar 

  • Trayhurn P, Goodbody AE, James WP (1982) A role for brown adipose tissue in the genesis of obesity? Studies on experimental animals. Proc Nutr Soc 41(2):127–131

    CAS  PubMed  Google Scholar 

  • Tseng Y-H, Cypess AM, Kahn CR (2010) Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 9(6):465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286

    PubMed  Google Scholar 

  • Vallerand AL, Perusse F, Bukowiecki LJ (1987) Cold exposure potentiates the effect of insulin on in vivo glucose uptake. Am J Physiol Endocrinol Metab 253(2):E179–E186

    CAS  Google Scholar 

  • van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM, DeSmet M, Saris WH (2002) Acute effect of L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin Pharmacol Ther 71(4):272–279

    PubMed  Google Scholar 

  • van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123(8):3395–3403

    PubMed  PubMed Central  Google Scholar 

  • van Marken Lichtenbelt WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Phys Regul Integr Comp Phys 301(2):R285–R296

    Google Scholar 

  • van Marken Lichtenbelt WD, Schrauwen P, van de Kerckhove S, Westerterp-Plantenga MS (2002) Individual variation in body temperature and energy expenditure in response to mild cold. Am J Physiol Endocrinol Metab 282(5):E1077–E1083

    PubMed  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    PubMed  Google Scholar 

  • van Marken Lichtenbelt W, Kingma B, van der Lans A, Schellen L (2014) Cold exposure – an approach to increasing energy expenditure in humans. Trends Endocrinol Metab 25(4):165–167

    Google Scholar 

  • Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD (2011) Brown adipose tissue in morbidly obese subjects. PLoS One 6(2):e17247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villarroya J, Cereijo R, Villarroya F (2013) An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab 305(5):E567–E572

    CAS  PubMed  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N-J, Enerbäck S (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525

    CAS  PubMed  Google Scholar 

  • Vosselman MJ, van der Lans AA, Brans B, Wierts R, van Baak MA, Schrauwen P, van Marken Lichtenbelt WD (2012) Systemic β-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes 61:3106–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldén TB (2010) Regulatory factors that reveal three distinct adipocytes: the brown, the white and the brite. The Wenner-Gren Institute, Stockholm University, Stockholm

    Google Scholar 

  • Weyer C, Tataranni PA, Snitker S, Danforth E, Ravussin E (1998) Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 47(10):1555–1561

    CAS  PubMed  Google Scholar 

  • Weyer C, Bogardus C, Mott DM, Pratley RE (1999a) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104(6):787–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weyer C, Gautier J, Danforth E Jr (1999b) Development of beta 3-adrenoceptor agonists for the treatment of obesity and diabetes an update. Diabetes Metab 25:11–21

    CAS  PubMed  Google Scholar 

  • Wheeldon N, McDevitt D, Lipworth B (1993) Do β3-adrenoceptors mediate metabolic responses to isoprenaline. Int J Med 86(9):595–600

    CAS  Google Scholar 

  • Wheeldon N, McDevitt D, McFarlane L, Lipworth B (1994) β-Adrenoceptor subtypes mediating the metabolic effects of BRL 35135 in man. Clin Sci 86(3):331–337

    CAS  Google Scholar 

  • Wijers SL, Saris WH, van Marken Lichtenbelt WD (2007) Individual thermogenic responses to mild cold and overfeeding are closely related. J Clin Endocrinol Metabol 92(11):4299–4305

    CAS  Google Scholar 

  • Wijers SL, Schrauwen P, Saris WH, van Marken Lichtenbelt WD (2008) Human skeletal muscle mitochondrial uncoupling is associated with cold induced adaptive thermogenesis. PLoS One 3(3):e1777

    PubMed  PubMed Central  Google Scholar 

  • Wijers SL, Saris WH, Lichtenbelt WDM (2010) Cold-induced adaptive thermogenesis in lean and obese. Obesity 18(6):1092–1099

    PubMed  Google Scholar 

  • Wijers SL, Schrauwen P, van Baak MA, Saris WH, van Marken Lichtenbelt WD (2011) β-Adrenergic receptor blockade does not inhibit cold-induced thermogenesis in humans: possible involvement of brown adipose tissue. J Clin Endocrinol Metabol 96(4):E598–E605

    CAS  Google Scholar 

  • Wilson S, Thurlby PL, Arch JR (1987) Substrate supply for thermogenesis induced by the beta-adrenoceptor agonist BRL 26830A. Can J Physiol Pharmacol 65(2):113–119

    CAS  PubMed  Google Scholar 

  • Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317(7):403–408

    CAS  PubMed  Google Scholar 

  • Wolfe RR, Klein S, Carraro F, Weber J-M (1990) Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol Endocrinol Metab 258(2):E382–E389

    CAS  Google Scholar 

  • Yang X, Enerbäck S, Smith U (2003) Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance. Obes Res 11(10):1182–1191

    CAS  PubMed  Google Scholar 

  • Yazawa S, Suetom N, Okamoto K, Namiki T (1989) Content of capsaicinoids and capsaicinoid-like substances in fruit of pepper (Capsicum annuum L.) hybrids made with ‘CH-19 sweet’ as a parent. J Jpn Soc Hortic Sci 58(3):601–607

    CAS  Google Scholar 

  • Ye X, Qi J, Ren G, Xu P, Wu Y, Zhu S, Yu D, Li S, Wu Q, Muhi RL (2015) Long-lasting anti-diabetic efficacy of PEGylated FGF-21 and liraglutide in treatment of type 2 diabetic mice. Endocrine 49(3):683–692

    CAS  PubMed  Google Scholar 

  • Yen T (1984) The antiobesity and metabolic activities of LY79771 in obese and normal mice. Int J Obes 8(1):69–78

    CAS  PubMed  Google Scholar 

  • Yen T, McKee M, Stamm N (1984) Thermogenesis and weight control. Int J Obes 8:65–78

    CAS  PubMed  Google Scholar 

  • Yen T, Fuller R, Hemrick-Luecke S, Dininger N (1988) Effects of LY104119, a thermogenic weight-reducing compound, on norepinephrine concentrations and turnover in obese and lean mice. Int J Obes 12(1):59–67

    CAS  PubMed  Google Scholar 

  • Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1):89–92

    CAS  PubMed  Google Scholar 

  • Yoneshiro T, Saito M (2013) Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management. Curr Opin Clin Nutr Metab Care 16(6):625–631

    CAS  PubMed  Google Scholar 

  • Yoneshiro T, Saito M (2015) Activation and recruitment of brown adipose tissue as anti-obesity regimens in humans. Ann Med 47(2):133–141

    CAS  PubMed  Google Scholar 

  • Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, Miyagawa M, Tsujisaki M, Saito M (2011a) Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 19(9):1755–1760

    PubMed  Google Scholar 

  • Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, Saito M (2011b) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity 19(1):13–16

    PubMed  Google Scholar 

  • Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95(4):845–850

    CAS  PubMed  Google Scholar 

  • Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, Saito M (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123(8):3404–3408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneshiro T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K, Katsuragi Y, Kameya T, Sugie H, Saito M (2017) Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans, 2. Am J Clin Nutr 105(4):873–881

    PubMed  Google Scholar 

  • Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M (1994) Anti-obesity and anti-diabetic effects of CL 316, 243, a highly specific β3-adrenoceptor agonist, in yellow KK mice. Life Sci 54(7):491–498

    CAS  PubMed  Google Scholar 

  • Yoshino S, Kim M, Awa R, Kuwahara H, Kano Y, Kawada T (2014) Kaempferia parviflora extract increases energy consumption through activation of BAT in mice. Food Sci Nutr 2(6):634–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka M, St-Pierre S, Suzuki M, Tremblay A (1998) Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women. Br J Nutr 80(6):503–510

    CAS  PubMed  Google Scholar 

  • Yoshitomi H, Yamazaki K, Abe S, Tanaka I (1998) Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic β3Adrenergic receptor agonist treatment. Biochem Biophys Res Commun 253(1):85–91

    CAS  PubMed  Google Scholar 

  • Young P, Cawthorne M, Levy AL, Wilson K (1984) Reduced maximum capacity of glycolysis in brown adipose tissue of genetically obese, diabetic (db/db) mice and its restoration following treatment with a thermogenic β-adrenoceptor agonist. FEBS Lett 176(1):16–20

    CAS  PubMed  Google Scholar 

  • Young P, Cawthorne M, Smith S (1985) Brown adipose tissue is a major site of glucose utilisation in C57B16obob mice treated with a thermogenic β-adrenoceptor agonist. Biochem Biophys Res Commun 130(1):241–248

    CAS  PubMed  Google Scholar 

  • Zhang J, Li Y (2014) Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov Today 19(5):579–589

    CAS  PubMed  Google Scholar 

  • Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou Z-G, Liu F, Wong RL, Chow W-S, Tso AW, Lam KS (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57:1246–1253

    CAS  PubMed  Google Scholar 

  • Zhang Q, Miao Q, Ye H, Zhang Z, Zuo C, Hua F, Guan Y, Li Y (2014) The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study. Diabetes Metab Res Rev 30(6):513–520

    CAS  PubMed  Google Scholar 

  • Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23(9):3113–3120

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Larson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larson, C.J. (2018). Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. In: Pfeifer, A., Klingenspor, M., Herzig, S. (eds) Brown Adipose Tissue. Handbook of Experimental Pharmacology, vol 251. Springer, Cham. https://doi.org/10.1007/164_2018_184

Download citation

Publish with us

Policies and ethics