Skip to main content

Physical Basis and Principles of Action of Microbubble-based Contrast Agents

  • Chapter
Contrast Media in Ultrasonography

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AL, Hampton LD (1980) Acoustics of gas-bearing sediments. Background. J Acoust Soc Am 67:1865–1889

    Article  Google Scholar 

  • Bauer A, Blomley MJK, Leen E, Cosgrove D, Schlief R (1999) Liver-specific imaging with SHU 563 A: diagnostic potential of a new class of ultrasound contrast media. Eur Radiol 9[Suppl 3]:S349–S352

    Article  PubMed  Google Scholar 

  • Chatterjee D, Sarkar K (2003) A Newtonian rheological model for the interface of microbubble contrast agents. Ultrasound Med Biol 29:1749–1757

    PubMed  Google Scholar 

  • Chomas JE, Dayton P, May D, Ferrara K (2001) Threshold of fragmentation for ultrasonic contrast. J Biomed Opt 6:141–150

    Article  PubMed  Google Scholar 

  • Church CC (1995) The effect of an elastic solid surface layer on the radial pulsation of gas bubbles. J Acoust Soc Am 97:1510–1521

    Article  Google Scholar 

  • Correas JM, Kessler D, Worah D, Quay SC (1997) The first phase shift ultrasound contrast agent: EchoGen. In: Goldberg BB (ed) Ultrasound contrast agents. Dunitz, London, pp 83–99

    Google Scholar 

  • Correas JM, Burns PN, Lai X, Qi X (2000) Infusion versus Bolus of an ultrasound contrast agent: in vivo dose-response measurements of BR1. Invest Radiol 35:72–79

    Article  PubMed  Google Scholar 

  • Correas JM, Bridal L, Lesavre A et al (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11:1316–1328

    Article  PubMed  Google Scholar 

  • Coussios CC, Holland CK, Jakubowska L et al (2004) In vitro characterization of liposomes and Optison by acoustic scattering at 3.5 MHz. Ultrasound Med Biol 30:181–190

    Article  PubMed  Google Scholar 

  • Dayton PA, Ferrara KW (2002) Targeted imaging using ultrasound. J Magn Res Imaging 16:362–377

    Article  Google Scholar 

  • De Jong N, Hoff L (1993) Ultrasound scattering properties of Albunex® microspheres. Ultrasonics 31:175–181

    Article  PubMed  Google Scholar 

  • De Jong N, Hoff L, Skotland T, Bom N (1992) Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30:95–103

    Article  PubMed  Google Scholar 

  • De Jong N, Cornet R, Lancée CT (1994a) Higher harmonics of vibrating gas filled microbubbles, part one: simulations. Ultrasonics 32:447–453

    Article  Google Scholar 

  • De Jong N, Cornet R, Lancée CT (1994b) Higher harmonics of vibrating gas filled microbubbles, part two: measurements. Ultrasonics 32:455–459

    Article  Google Scholar 

  • De Jong N, Frinking P, ten Cate F, van der Wouw P (1996) Characteristics of contrast agents and 2D imaging. IEEE ultrasonics symposium, pp 1449–1458

    Google Scholar 

  • De Jong N, Frinking PJ, Bouakaz A et al (1999) Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 26:487–492

    Article  Google Scholar 

  • Fisher NG, Christiansen JP, Leong-Poi H et al (2002) Myocardial and microcirculatory kinetics of BR14, a novel third-generation intravenous ultrasound contrast agent. J Am Coll Cardiol 39:530–537

    Article  PubMed  Google Scholar 

  • Forsberg F, Tao Shi W (2001) Physics of contrast microbubbles. In: Goldberg B, Raichlen JS, Forsberg F (eds) Ultrasound contrast agents: basic principles and clinical applications. Dunitz, London, pp 15–23

    Google Scholar 

  • Forsberg F, Basude R, Liu JB et al (1999) Effect of filling gasses on the backscatterer from contrast microbubble: theory and in vivo measurements. Ultrasound Med Biol 25:1203–1211

    Article  PubMed  Google Scholar 

  • Frinking PJA, Céspedes EI, de Jong N (1998) Multi-pulse ultrasound contrast imaging based on a decorrelation detection strategy. Proc IEEE Ultras Symp 2:1787–1790

    Google Scholar 

  • Frinking PJA (1999) Ultrasound contrast agents: acoustic characterization and diagnostic imaging. Optima Grafische Communicatie, Rotterdam, pp 33–37

    Google Scholar 

  • Frinking PJA, de Jong N (1999) Scattering properties of encapsulated gas bubbles at high ultrasound pressures. J Acoust Soc Am 105:1989–1996

    Article  Google Scholar 

  • Forsberg F, Goldberg BB, Liu JB (1996) On the feasibility of real time in vivo harmonic imaging with proteinaceous microspheres. J Ultrasound Med 15:853–860

    PubMed  Google Scholar 

  • Gorce JM, Arditi M, Schneider M (2000) Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue. Invest Radiol 35:661–671

    Article  PubMed  Google Scholar 

  • Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366

    PubMed  Google Scholar 

  • Harvey CJ, Blomley MJ, Eckersley RJ et al (2000) Hepatic malignancies: improved detection with pulse inversion US in late phase of enhancement with SH U 508 A-early experience. Radiology 216:903–908

    PubMed  Google Scholar 

  • Harvey CJ, Blomley MJK, Eckersley RJ, Cosgrove DO (2001) Developments in ultrasound contrast media. Eur Radiol 11:675–689

    Google Scholar 

  • Hauff P, Fritsch T, Reinhardt M et al (1997) Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest Radiol 32:94–99

    Article  PubMed  Google Scholar 

  • Hoff L (1996) Acoustic properties of ultrasonic contrast agents. Ultrasonics 34:591–593

    Article  Google Scholar 

  • Jakobsen JA, Correas JM (2001) Ultrasound contrast agents and their use in urogenital radiology: status and prospects. Eur Radiol 11:2082–2091

    Article  PubMed  Google Scholar 

  • Kabalnov A, Klein D, Pelura T et al (1998a) Dissolution of multicomponent microbubble in the blood stream 1. Theory. Ultrasound Med Biol 24:739–749

    Article  PubMed  Google Scholar 

  • Kabalnov A, Bradley JA, Flam S et al (1998b) Dissolution of multicomponent microbubble in the blood stream 2. Experiment. Ultrasound Med Biol 24:751–760

    Article  PubMed  Google Scholar 

  • Kono Y, Steinbach GC, Peterson T et al (2002) Mechanism of parenchymal enhancement of the liver with a microbubble-based US contrast medium: an intravital microscopy study in rats. Radiology 224:253–257

    PubMed  Google Scholar 

  • Lindner JR, Dayton PA, Coggins MP et al (2000) Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102:531–538

    PubMed  Google Scholar 

  • Marelli C (1999) Preliminary experience with NC100100, a new ultrasound contrast agent for intravenous injection. Eur Radiol 9[Suppl 3]:S343–S346

    PubMed  Google Scholar 

  • Medwin H (1977) Counting bubbles acoustically: a review. Ultrasonics 1:7–13

    Article  Google Scholar 

  • Merritt CR, Forsberg F, Shi WT et al (2000) The mechanical index: an inappropriate and misleading indicator for desctruction of ultrasound microbubble contrast agents. Radiology 217:395

    PubMed  Google Scholar 

  • Meuwl JY, Correas JM, Bleuzen A, Tranquart F (2003) Detection modes of ultrasound contrast agents. J Radiol 84:2013–2024

    PubMed  Google Scholar 

  • Morel DR, Schwieger I, Hohn L et al (2000) Human pharmacokinetics and safety evaluation of SonoVueâ„¢, a new contrast agent for ultrasound imaging. Invest Radiol 35:80–85

    Article  PubMed  Google Scholar 

  • Powers JE, Burns PN, Souquet J (1997) Imaging instrumentation for ultrasound contrast agents. In: Nanda NCSR, Goldberg BB (eds) Advances in echo imaging using contrast enhancement. Kluwer, Dordrecht, pp 137–170

    Google Scholar 

  • Postema M, Bouakaz A, Chin CT, de Jong N (2001) Real-time optical imaging of individual microbubbles in an ultrasonic field. Proc IEEE Ultras Symp 1679–1682

    Google Scholar 

  • Postema M, Bouakaz A, Chin CT, de Jong N (2002) Optically observed microbubble coalescence and collapse. Proc IEEE Ultras Symp 1900–1903

    Google Scholar 

  • Postema M, van Wamel A, Lancée CT, de Jong N (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30:827–840

    Article  PubMed  Google Scholar 

  • Quaia E, Blomley MJK, Patel S et al (2002) Initial observations on the effect of irradiation on the liver-specific uptake of Levovist. Eur J Radiol 41:192–199

    Article  PubMed  Google Scholar 

  • Rayleigh (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98

    Google Scholar 

  • Schneider M, Arditi M, Barrau MB et al (1995) BR1: a new ultrasonographic contrast agent based on sulphur hexafluoride-filled microbubbles. Invest Radiol 30:451–457

    PubMed  Google Scholar 

  • Schneider M, Broillet A, Bussat P et al (1997) Gray-scale liver enhancement in VX2 tumor bearing rabbits using BR14, a new ultrasonographic contrast agent. Invest Radiol 32:410–417

    Article  PubMed  Google Scholar 

  • Shankar PM, Krishna PD, Newhouse VL (1998) Advantages of subharmonic over second harmonic backscatterer for contrast-to-tissue echo enhancement. Ultrasound Med Biol 24:395–399

    Article  PubMed  Google Scholar 

  • Shen CC, Li PC (2003) Pulse-inversion-based fundamental imaging for contrast detection. IEEE Trans Ultrason Ferroelectr Freq Control 50:1124–1133

    Article  PubMed  Google Scholar 

  • Shi WT, Forsberg F, Tornes A et al (2000) Destruction of contrast microbubbles and the association with inertial cavitation. Ultrasound Med Biol 26:1009–1019

    Article  PubMed  Google Scholar 

  • Takeuchi H, Ohmori K, Kondo I (2004) Interaction with leukocytes: phospholipid-stabilized versus albumin-shell microbubbles. Radiology 230:735–742

    PubMed  Google Scholar 

  • Walker KW, Pantely GA, Sahn DJ (1997) Ultrasound-mediated destruction of contrast agents. Effect of ultrasound intensity, exposure, and frequency. Invest Radiol 32:728–734

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quaia, E. (2005). Physical Basis and Principles of Action of Microbubble-based Contrast Agents. In: Quaia, E. (eds) Contrast Media in Ultrasonography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27214-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-27214-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40740-9

  • Online ISBN: 978-3-540-27214-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics