Skip to main content

Spectral Doppler Sonography: Waveform Analysis and Hemodynamic Interpretation

  • Chapter
Doppler Ultrasound in Obstetrics and Gynecology

Abstract

The spectral Doppler power waveform contains an immense amount of hemodynamic information from the sampled circulation. As we saw in Chap. 3, the spectral information consists of three fundamental variables: frequency, amplitude, and time. Spectral frequency reflects the speed of blood flow. The amplitude approximately represents the number of scatterers traveling at a given speed and is also known as the power of the spectrum. Amplitude depends on the quantity of moving red blood cells (RBCs) in the sample and therefore reflects the volume of blood flow. The time over which the frequency and amplitude of the Doppler spectrum is therefore three-dimensional (see Chap. 3). Such a display is complex, however, and not particularly useful for clinical application. Fortunately, there are alternative approaches for effectively characterizing the spectral waveform, including two-dimensional sonograms and various frequency envelope waveforms. These approaches can be utilized to evaluate various aspects of hemodynamics of flow to downstream impedance. This chapter discusses these subjects and other related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saini VD, Maulik D, Nanda NC, Rosenzweig MS (1983) Computerized evaluation of blood flow measurement indices using Doppler ultrasound. Ultrasound Med Biol 9:657–660

    Article  PubMed  CAS  Google Scholar 

  2. Maulik D, Saini VD, Nanda NC, Rosenzweig MS (1982) Doppler evaluation of fetal hemodynamics. Ultrasound Med Biol 8:705–710

    Article  PubMed  CAS  Google Scholar 

  3. Evans DH, McDicken WN, Skidmore R, Woodcock JP (1989) Doppler signal processors: theoretical considerations. In: Doppler ultrasound: physics, instrumentation and clinical applications. Wiley, Chichester, p 144

    Google Scholar 

  4. Maulik D, Nanda NC, Moodley S, Saini VD, Thiede HA (1985) Application of Doppler echocardiography in the assessment of fetal cardiac disease. Am J Obstet Gynecol 151:951–957

    PubMed  CAS  Google Scholar 

  5. Kremkau F (1990) Doppler ultrasound: principles and instrumentation. Saunders, Philadelphia

    Google Scholar 

  6. Gill RW (1979) Pulsed Doppler with B-mode imaging for quantitative blood flow measurements. Ultrasound Med Biol 5:223–235

    PubMed  CAS  Google Scholar 

  7. Eik Nes SH, Brubakk AO, Ulstein MK (1980) Measurement of human fetal blood flow. BMJ 280:283–284

    Google Scholar 

  8. Maulik D, Nanda NC, Saini VD (1984) Fetal Doppler echocardiography: methods and characterization of normal and abnormal hemodynamics. Am J Cardiol 53:572–578

    Article  PubMed  CAS  Google Scholar 

  9. Boito S, Struijk PC, Ursem NT, Stijnen T, Wladimiroff JW (2002) Umbilical venous volume flow in the normal developing and growth restricted human fetus. Ultrasound Obstet Gynecol 19:344–349

    Article  PubMed  CAS  Google Scholar 

  10. Soustiel JF, Levy E, Zaaroor M, Bibi R, Lukaschuk S, Manor D (2002) A new angle-independent Doppler ultrasonic device for assessment of blood flow volume in the extracranial internal carotid artery. J Ultrasound Med 21:1405–1412

    PubMed  Google Scholar 

  11. Overbeck JR, Beach KW, Strandness DE Jr (1992) Vector Doppler: accurate measurement of blood velocity in two dimensions. Ultrasound Med Biol 18:19–31

    Article  PubMed  CAS  Google Scholar 

  12. Dunmire B, Beach KW, Labs K, Plett M, Strandness DE Jr (2000) Cross-beam vector Doppler ultrasound for angle-independent velocity measurements. Ultrasound Med Biol 26:1213–1235

    Article  PubMed  CAS  Google Scholar 

  13. Steel R, Ramnarine KV, Criton A, Davidson F, Allan PL, Humphries N, Routh HF, Fish PJ, Hoskins PR (2004) Angle-dependence and reproducibility of dual-beam vector doppler ultrasound in the common carotid arteries of normal volunteers. Ultrasound Med Biol 30:271–276

    PubMed  Google Scholar 

  14. Dotti D, Gatti E, Svelto V, Ugge A, Vidali P (1976) Blood flow measurement by ultrasound correlation techniques. Energia Nucleare 23:571–575

    Google Scholar 

  15. Embree PM, O’Brien Jr WD (1985) The accurate ultrasonic measurement of the volume flow of blood by time domain correlation. IEEE Ultrason Symp 963–966.

    Google Scholar 

  16. Bonnefus O, Pesque P (1986) Time domain formulation of pulse Doppler ultrasound and blood velocity estimation by cross correlation. Ultrasonic Imaging 8:73–85

    Google Scholar 

  17. Maulik D, Kadado T, Downing G, Phillips C (1995) In vitro and in vivo validation of time domain velocity and Flow Measurement Technique. J Ultrasound Med 14:939–948

    PubMed  CAS  Google Scholar 

  18. Bohs LN, Friemel BH, McDermott BA, Trahey GE (1993) A real time system for quantifying and displaying two-dimensional velocities using ultrasound. Ultrasound Med Biol 19:751–761

    Article  PubMed  CAS  Google Scholar 

  19. Chen X, Zohdy MJ, Emelianov SY, O’Donnell M (2004) Lateral speckle tracking using synthetic lateral phase. IEEE Trans Ultrason Ferroelectr Freq Control 51:540–550

    PubMed  Google Scholar 

  20. Bohs LN, Geiman BJ, Anderson ME, Gebhart SC, Trahey GE (2000) Speckle tracking for multi-dimensional flow estimation. Ultrasonics 38:369–375

    Article  PubMed  CAS  Google Scholar 

  21. McDonald D (1974) Blood flow in arteries. Williams & Wilkins, Baltimore

    Google Scholar 

  22. Gosling RG, King DH (1975) Ultrasound angiology. In: Macus AW, Adamson J (eds) Arteries and Veins. Churchill-Livingstone, Edinburgh, pp 61–98

    Google Scholar 

  23. Pourcelot L (1974) Applications clinique de l’examen Doppler transcutance. In: Pourcelot L (ed) Velocimetric ultrasonore Doppler. INSERM, Paris, p 213

    Google Scholar 

  24. Stuart B, Drumm J, FitzGerald DE, Diugnan NM (1980) Fetal blood velocity waveforms in normal pregnancy. Br J Obstet Gynaecol 87:780–785

    PubMed  CAS  Google Scholar 

  25. Campbell S, Diaz-Recasens J, Griffin DR et al (1983) New Doppler technique for assessing uteroplacetal blood flow. Lancet 1:675–677

    PubMed  CAS  Google Scholar 

  26. Thompson RS, Trudinger BJ, Cook CM (1985) Doppler ultrasound waveforms in the fetal umbilical artery: quantitative analysis technique. Ultrasound Med Biol 11:707–718

    Article  PubMed  CAS  Google Scholar 

  27. Maršál K (1987) Ultrasound assessment of fetal circulation as a diagnostic test: a review. In: Lipshitz J, Maloney J, Nimrod C, Carson G (eds) Perinatal development of the heart and lung. Perinatology Press, Ithaca, NY, pp 127–142

    Google Scholar 

  28. Maulik D, Yarlagadda P, Youngblood JP, Ciston P (1990) The diagnostic efficacy of umbilical arterial systolic/diastolic ratio as a screening tool: a prospective blinded study. Am J Obstet Gynecol 162:1518–1523

    PubMed  CAS  Google Scholar 

  29. Maulik D, Yarlagadda P, Youngblood JP, Ciston P (1991) Comparative efficacy of umbilical arterial Doppler indices for predicting adverse perinatal outcome. Am J Obstet Gynecol 164:1434–1439

    PubMed  CAS  Google Scholar 

  30. Maulik D, Yarlagadda P, Youngblood JP, Willoughby L (1989) Components of variability of umbilical arterial Doppler velocimetry: a prospective analysis. Am J Obstet Gynecol 160:1406–1409

    PubMed  CAS  Google Scholar 

  31. Hwang NHC, Norman A (1977) An engineering survey of problems in cardiovascular flow dynamics and measurements. University Park Press, Baltimore

    Google Scholar 

  32. Maulik D, Yarlagadda P (1987) In vitro validation of Doppler waveform indices. In: Maulik D, McNellis D (eds). Doppler Ultrasound Measurement of Maternal Fetal Hemodynamics. Perinatology Press, Ithaca, NY, p 257

    Google Scholar 

  33. Womersley JR (1957) The Mathematical Analysis of the Arterial Circulation in a State of Oscillatory Motion. Technical Report WADC-TR56-614. Wright Air Development Center, Maryland

    Google Scholar 

  34. Westerhof N, Sipkema P, Van den Bos GC, Elzinga G (1972) Forward and backward waves in the arterial system. Cardiovasc Res 6:648–656

    Article  PubMed  CAS  Google Scholar 

  35. Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1981) Manipulation of ascending aortic pressure and flow aveeflections with Valsalva maneuver: relationship to input impedance. Circulation 63:122–132

    PubMed  CAS  Google Scholar 

  36. Spencer JAD, Giussani DA, Moore PJ, Hanson MA (1991) In viro validation of Doppler indices using blood and water. J Ultrasound Med 10:305–308

    PubMed  CAS  Google Scholar 

  37. Maulik D, Yarlagadda P, Nathaniels PW, Figueroa JP (1989) Hemodynamic validation of Doppler assessment of fetoplacental circulation in a sheep model system. J Ultrasound Med 8:177–181

    PubMed  CAS  Google Scholar 

  38. Trudinger BJ, Steven D, Connelly A et al (1987) Umbilical artery velocity waveform and placental resistance: the effects of embolization of the umbilical circulation. Am J Obstet Gynecol 157:1443–1448

    PubMed  CAS  Google Scholar 

  39. Morrow RJ, Adamson SL, Bull SB, Knox Ritchie JW (1989) Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 161:1055–1060

    PubMed  CAS  Google Scholar 

  40. Maulik D, Yarlagadda P (1990) Hemodynamic validation of the Doppler indices: an in vitro study (abstract). Presented at the International Perinatal Doppler Society: 3rd Congress, Malibu, CA

    Google Scholar 

  41. Downing GJ, Yarlagadda AP, Maulik D (1991) Comparison of the pulsatility index and input impedance parameters in a model of altered hemodynamics, J Ultrasound Med 10:317–321

    PubMed  CAS  Google Scholar 

  42. Downing GJ, Maulik D (1991) Correlation of the pulsatility index (PI) with input impedance parameters during altered hemodynamics (abstract). J Matern Fetal Invest 1:114

    Google Scholar 

  43. Downing GJ, Maulik D, Phillips C, Kadado T (1993) In vivo correlation of Doppler waveform analysis with arterial input impedance parameters. Ultrasound Med Biol 19:549–559

    Article  PubMed  CAS  Google Scholar 

  44. Thompson RS, Trudinger BJ, Cook CM (1985) Doppler ultrasound waveforms in the fetal umbilical artery: quantitative analysis technique. Ultrasound Med Biol 11:707–718

    Article  PubMed  CAS  Google Scholar 

  45. Mires G, Dempster J, Patel NM et al (1987) The effect of fetal heart rate on umbilical artery flow velocity waveform. Br J Obstet Gynaecol 94:665–669

    PubMed  CAS  Google Scholar 

  46. Yarlagadda P, Willoughby L, Maulik D (1989) Effect of fetal heart rate on umbilical artery Doppler indices. J Ultrasound Med 8:215–218

    PubMed  CAS  Google Scholar 

  47. Maulik D, Downing GJ, Yarlagadda P (1990) Umbilical arterial Doppler indices in acute uteroplacental flow occlusion. Echocardiography 7:619

    Google Scholar 

  48. Downing GJ, Yarlagadda P, Maulik D (1991) Effects of acute hypoxemia on umbilical arterial Doppler indices in a fetal ovine model. Early Hum Dev 25:1–10

    Article  PubMed  CAS  Google Scholar 

  49. Legarth J, Thorup E (1989) Characteristics of Doppler blood velocity waveforms in a cardiovascular in vitro model. II. The influence of peripheral resistance, perfusion pressures and blood flow. Scan J Clin Lab Invest 49: 459–464

    CAS  Google Scholar 

  50. Legarth J, Thorup E (1989) Characteristics of Doppler blood velocity waveforms in a cardiovascular in vitro model. I. The model and the influence of pulse rate. Scand J Clin Lab Invest 49:451–457

    PubMed  CAS  Google Scholar 

  51. Giles WB, Trudinger JB, Baird PJ (1985) Fetal umbilical artery flow velocity waveforms and placental resistance: pathologic correlation. Br J Obstet Gynaecol 92:31–38

    PubMed  CAS  Google Scholar 

  52. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC (1996) Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 175: 1534–1542

    Article  PubMed  CAS  Google Scholar 

  53. Todros T, Sciarrone A, Piccoli E, Guiot C, Kaufmann P, Kingdom J (1999) Umbilical Doppler waveforms and placental villous angiogenesis in pregnancies complicated by fetal growth restriction. Obstet Gynecol 93: 499–503

    Article  PubMed  CAS  Google Scholar 

  54. Voigt HJ, Becker V (1992) Uteroplacental insufficiency — comparison of uteroplacectal blood flow velocimetry and histomorphology of placental bed. J Matern Fetal Invest 2:251

    Google Scholar 

  55. Nichols WW, O’Rourke MF, Avolio AP et al (1987) Age-related changes in left ventricular/arterial coupling. In: Yin FCP (ed) Ventricular/vascular coupling. Springer, Berlin Heidelberg New York, pp 79–114

    Google Scholar 

  56. Downing GS, Maulik D (1991) Comparison of the pulsatility index (PI) with input impedance parameters in a model of altered hemodynamics. J Ultrasound Med 10:317–321

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maulik, D. (2005). Spectral Doppler Sonography: Waveform Analysis and Hemodynamic Interpretation. In: Maulik, D. (eds) Doppler Ultrasound in Obstetrics and Gynecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28903-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-28903-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23088-5

  • Online ISBN: 978-3-540-28903-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics