Skip to main content

The Norepinephrine Transporter in Physiology and Disease

  • Chapter
Neurotransmitter Transporters

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand A, Charney DS (2000) Norepinephrine dysfunction in depression. J Clin Psychiatry 61:16–24

    PubMed  CAS  Google Scholar 

  • Apparsundaram S, Moore KR, Malone MD, Hartzell HC, Blakely RD (1997) Molecular cloning and characterization of an L-epinephrine transporter from sympathetic ganglia of the bullfrog, Rana catesbiana. J Neurosci 17:2691–2702

    PubMed  CAS  Google Scholar 

  • Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD (1998a) Acute regulation of norepinephrine transport. I. Protein kinase C-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells. J Pharmacol Exp Ther 287:733–743

    PubMed  CAS  Google Scholar 

  • Apparsundaram S, Schroeter S, Giovanetti E, Blakely RD (1998b) Acute regulation of norepinephrine transport: II. PKC-modulated surface expression of human norepinephrine transporter proteins. J Pharmacol Exp Ther 287:744–751

    PubMed  CAS  Google Scholar 

  • Apparsundaram S, Sung U, Price RD, Blakely RD (2001) Trafficking-dependent and-independent pathways of neurotransmitter transporter regulation differentially involving p38 mitogen-activated protein kinase revealed in studies of insulin modulation of norepinephrine transport in SK-N-SH cells. J Pharmacol Exp Ther 299:666–677

    PubMed  CAS  Google Scholar 

  • Arroyo M, Baker WA, Everitt BJ (2000) Cocaine self-administration in rats differentially alters mRNA levels of the monoamine transporters and striatal neuropeptides. Mol Brain Res 83:107–120

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Weil-Malherbe H, Tomchick R (1959) The physiological disposition of H3-epinephrine and its metabolite metanephrine. J Pharmacol Exp Ther 127:251–256

    PubMed  CAS  Google Scholar 

  • Axelrod J, Whitby LG, Herting G (1961) Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133:383–384

    PubMed  CAS  Google Scholar 

  • Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, Kubler W, Haass M (2001) The neuronal norepinephrine transporter in experimental heart failure: Evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 33:461–472

    Article  PubMed  CAS  Google Scholar 

  • Barker EL, Moore KR, Rakhshan F, Blakely RD (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. JNeurosci 19:4705–4717

    CAS  Google Scholar 

  • Bauer ME, Tejani-Butt SM (1992) Effects of repeated administration of desipramine or electroconvulsive shock on norepinephrine uptake sites measured by [3H]nisoxetine autoradiography. Brain Res 582:208–214

    Article  PubMed  CAS  Google Scholar 

  • Belej T, Manji D, Sioutis S, Barros HMT, Nobrega JN (1996) Changes in serotonin and norepinephrine uptake sites after chronic cocaine: Pre-vs post-withdrawal effects. Brain Res 736:287–296

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Spencer T (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 46:1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Blakely RD (2001) Physiological genomics of antidepressant targets: keeping the periphery in mind. J Neurosci 21:8319–8323

    PubMed  CAS  Google Scholar 

  • Blakely RD, DeFelice LJ, Galli A (2005) Biogenic amine neurotransmitter transporters: just when you thought you knew them. J Appl Physiol 20:225–231

    CAS  Google Scholar 

  • Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Vrieze FWD, Arcos-Burgos M, Straub RE, Hardy JA, Castellanos FX, Rapoport JL (2005) Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 134:67–72

    PubMed  Google Scholar 

  • Bohn LM, Xu F, Gainetdinov RR, Caron MG (2000) Potentiated opioid analgesia in norepinephrine transporter knock-out mice. J Neurosci 20:9040–9045

    PubMed  CAS  Google Scholar 

  • Böisch H (1984) The transport of (+)-amphetamine by the neuronal noradrenaline carrier. Naunyn Schmiedebergs Arch Pharmacol 327:267–272

    Article  Google Scholar 

  • Böisch H (1986) The role of co-transported sodium in the effect of indirectly acting sympathomimetic amines. Naunyn Schmiedebergs Arch Pharmacol 332:135–141

    Article  Google Scholar 

  • Böisch H (1998) Transport and drug binding kinetics in membrane vesicle preparation. Methods Enzymol 296:259–278

    Article  Google Scholar 

  • Böisch H, Brüss M (1994) The noradrenaline transporter of the neuronal plasma-membrane. Ann N Y Acad Sci 733:193–202

    Google Scholar 

  • Böisch H, Harder R (1986) Binding of 3H-desipramine to the neuronal noradrenaline carrier of rat phaeochromocytoma cells (PC-12 cells). Naunyn Schmiedebergs Arch Pharmacol 334:403–411

    Article  Google Scholar 

  • Böisch H, Trendelenburg U (1988) The mechanism of action of indirectly acting sympathomimetic amines. In: Trendelenburg U, Weiner N (eds) Catecholamines. Handbook of experimental pharmacology, vol 90/I. Springer, Heidelberg, Berlin, New York, pp 247–277

    Google Scholar 

  • Böisch H, Runkel F, Roubert C, Giros B, Brüss M (1999) The human desipramine-sensitive noradrenaline transporter and the importance of defined amino acids for its function. J Auton Pharmacol 19:327–333

    Google Scholar 

  • Boschmann M, Schroeder C, Christensen NJ, Tank J, Krupp G, Biaggioni I, Klaus S, Sharma AM, Luft FC, Jordan J (2002) Norepinephrine transporter function and autonomic control of metabolism. J Clin Endocrinol Metab 87:5130–5137

    Article  PubMed  CAS  Google Scholar 

  • Bottalico B, Larsson I, Brodszki J, Hernandez-Andrade E, Casslen B, Marsal K, Hansson SR (2004) Norepinephrine transporter (NET), serotonin transporter (SERT), vesicular monoamine transporter (VMAT2) and organic cation transporters (OCT1, 2 and EMT) in human placenta from pre-eclamptic and normotensive pregnancies. Placenta 25:518–529

    Article  PubMed  CAS  Google Scholar 

  • Bourachot ML, Merlet P, Pouillart F, Valette H, Bourguignon M, Scherrer M, Castaigne A, Syrota A (1993) I-123 metaiodobenzylguanidine scintigraphy as an index of severity in primary hypertrophic cardiomyopathy. J Nucl Med 34:14

    Google Scholar 

  • Brüss M, Kunz J, Lingen B, Böisch H (1993) Chromosomalmapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter. Hum Genet 91:278–280

    Article  PubMed  Google Scholar 

  • Brüss M, Hammermann R, Brimijoin S, Böisch H (1995) Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J Biol Chem 270:9197–9201

    Article  PubMed  Google Scholar 

  • Brüss M, Pörzgen P, Bryan-Lluka LJ, Böisch H (1997) The rat norepinephrine transporter: molecular cloning from PC12 cells and functional expression. Mol Brain Res 52:257–262

    Article  PubMed  Google Scholar 

  • Bryan-Lluka LJ, Paczkowski FA, Böisch H (2001) Effects of short-and long-term exposure to c-AMP and c-GMP on the noradrenaline transporter. Neuropharmacology 40:607–617

    Article  PubMed  CAS  Google Scholar 

  • Buck KJ, Amara SG (1994) Chimeric dopamine-norepinephrine transporters delineate structural domains influencing selectivity for catecholamines and 1-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A 91:12584–12588

    Article  PubMed  CAS  Google Scholar 

  • Burnette WB, Bailey MD, Kukoyi S, Blakely RD, Trowbridge CG, Justice JB (1996) Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68:2932–2938

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L, Wong DT, Perry KW (2002) Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology (Berl) 160:353–361

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Silvagni A (2004) Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol 16:121–128

    Article  PubMed  CAS  Google Scholar 

  • Carson RP, Diedrich A, Robertson D (2002) Autonomic control after blockade of the norepinephrine transporter: a model of orthostatic intolerance. J Appl Physiol 93:2192–2198

    PubMed  CAS  Google Scholar 

  • Chen N, Vaughan RA, Reith ME (2001) The role of conserved tryptophan and acidic residues in the human dopamine transporter as characterized by site-directed mutagenesis. J Neurochem 77:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • Chen NH, Trowbridge CG, Justice JB (1998) Voltammetric studies on mechanisms of dopamine efflux in the presence of substrates and cocaine from cells expressing human norepinephrine transporter. J Neurochem 71:653–665

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    PubMed  CAS  Google Scholar 

  • Cubells JF, Baker H, Volpe BT, Smith GP, Das SS, Joh TH (1995) Innervation-independent changes in the mRNAs encoding tyrosine hydroxylase and the norepinephrine transporter in rat adrenal medulla after high-dose reserpine. Neurosci Lett 193:189–192

    Article  PubMed  CAS  Google Scholar 

  • Davids E, Zhang KH, Kula NS, Tarazi FI, Baldessarini RJ (2002) Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther 301:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Muglia P, Jain U, Kennedy JL (2004) No evidence of linkage or association between the norepinephrine transporter (NET) gene MnlI polymorphism and adult ADHD. Am J Med Genet B Neuropsychiatr Genet 124B:38–40

    Article  PubMed  Google Scholar 

  • De Win MM, Habraken JB, Reneman L, van den B W, denHeeten GJ, Booij J (2005) Validation of [(123)I]beta-CIT SPECT to assess serotonin transporters in vivo in humans: a double-blind, placebo-controlled, crossover study with the selective serotonin reuptake inhibitor citalopram. Neuropsychopharmacology 30:996–1005

    Article  PubMed  CAS  Google Scholar 

  • Di Benedetto M, Feliciani D, D’Addario C, Izenwasser S, Candeletti S, Romualdi P (2004) Effects of the selective norepinephrine uptake inhibitor nisoxetine on prodynorphin gene expression in rat CNS. Mol Brain Res 127:115–120

    Article  PubMed  CAS  Google Scholar 

  • Distelmaier F, Wiedemann P, Brüss M, Böisch H (2004) Functional importance of the C-terminus of the human norepinephrine transporter. J Neurochem 91:537–546

    Article  PubMed  CAS  Google Scholar 

  • Diziedzicka-Wasylewska M, Faron-Gorecka A, Kusmider M, Drozdowska E, Rogoz Z, Siwanowicz J, Caron MG, Böisch H (2006) Effect of antidepressant drugs in mice lacking the norepinephrine transporter. Neuropsychopharmacology (in press)

    Google Scholar 

  • Eisenhofer G (2001) The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 91:35–62

    Article  PubMed  CAS  Google Scholar 

  • Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676

    PubMed  CAS  Google Scholar 

  • Eisensamer B, Rammes G, Gimpl G, Shapa M, Ferrari U, Hapfelmeier G, Bondy B, Parsons C, Gilling K, Zieglgänsberger W, Holsboer F, Rupprecht R (2003) Antidepressants are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol Psychiatry 8:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289:877–885

    PubMed  CAS  Google Scholar 

  • Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, Anderson W, Lambert G (1988) Assessment of human sympathetic nervous-system activity from measurements of norepinephrine turnover. Hypertension 11:3–20

    PubMed  CAS  Google Scholar 

  • Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G (1990) Overflow of catecholamine neurotransmitters to the circulation—source, fate, and functions. Physiol Rev 70:963–985

    PubMed  CAS  Google Scholar 

  • Eymin C, Charnay Y, Greggio B, Bouras C (1995) Localization of noradrenaline transporter messenger-RNA expression in the human locus-coeruleus. Neurosci Lett 193:41–44

    Article  PubMed  CAS  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM (1993) Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Res 602:161–164

    Article  PubMed  CAS  Google Scholar 

  • Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208:203–209

    PubMed  CAS  Google Scholar 

  • Foote SL, Bloom FE, Astonjones G (1983) Nucleus locus coeruleus—new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  CAS  Google Scholar 

  • Fullerton NE, Mairs RJ, Kirk D, Keith WN, Carruthers R, McCluskey AG, Brown M, Wilson L, Boyd M(2005) Application of targeted radiotherapy/gene therapy to bladder cancer cell lines. Eur Urol 47:250–256

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Sotnikova TD, Caron MG (2002) Monoamine transporter pharmacology and mutant mice. Trends Pharmacol Sci 23:367–373

    Article  PubMed  CAS  Google Scholar 

  • Galli A, Blakely RD, DeFelice LJ (1998) Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake. Proc Natl Acad Sci U S A 95:13260–13265

    Article  PubMed  CAS  Google Scholar 

  • Gehlert DR, Dreshfield L, Tinsley F, Benvenga MJ, Gleason S, Fuller RW, Wong DT, Hemrick-Luecke SK (1998) The selective norepinephrine reuptake inhibitor, LY368975, reduces food consumption in animal models of feeding. J Pharmacol Exp Ther 287:122–127

    PubMed  CAS  Google Scholar 

  • Gelernter J, Kruger S, Pakstis AJ, Pacholczyk T, Sparkes RS, Kidd KK, Amara S (1993) Assignment of the norepinephrine transporter protein (Net1) locus to chromosome-16. Genomics 18:690–692

    Article  PubMed  CAS  Google Scholar 

  • Gilsbach R, Faron-Gorecka A, Rogoz Z, Brüss M, Caron MG, Dziedzicka-Wasylewska M, Böisch H (2005) Norepinephrine transporter knockout-induced upregulation of brain alpha2A/C-adrenergic receptors. J Neurochem 96:1111–1120

    Article  CAS  Google Scholar 

  • Giros B, Wang YM, Suter S, McLeskey SB, Pifl C, Caron MG (1994) Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J Biol Chem 269:15985–15988

    PubMed  CAS  Google Scholar 

  • Gobert A, Billiras R, Cistarelli L, Millan MJ (2004) Quantification and pharmacological characterization of dialysate levels of noradrenaline in the striatumof freely-moving rats: release from adrenergic terminals and modulation by alpha2-autoreceptors. J Neurosci Methods 140:141–152

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DS, Holmes C, Frank SM, Dendi R, Cannon RO, Sharabi Y, Esler MD, Eisenhofer G (2002) Cardiac sympathetic dysantonomia in chronic orthostatic intolerance syndromes. Circulation 106:2358–2365

    Article  PubMed  Google Scholar 

  • Graefe KH, Böisch H (1988) The transport of amines across the axonal membranes of noradrenergic and dopaminergic neurones. In: Trendelenburg U, Weiner N (eds) Catecholamines. Handbook of experimental pharmacology, vol 90/I. Springer, Heidelberg, Berlin, New York, pp 193–245

    Google Scholar 

  • Graham D, Langer SZ (1992) Advances in sodium-ion coupled biogenic amine transporters. Life Sci 51:631–645

    Article  PubMed  CAS  Google Scholar 

  • Grossman SP (1960) Eating or drinking elicited by direct adrenergic or cholinergic stimulation of hypothalamus. Science 132:301–302

    PubMed  CAS  Google Scholar 

  • Gu HH, Wall S, Rudnick G (1996) Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J Biol Chem 271:6911–6916

    Article  PubMed  CAS  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    PubMed  CAS  Google Scholar 

  • Hadley D, Hoff M, Holik J, Reimherr F, Wender P, Coon H, Byerley W (1995) Manic-depression and the norepinephrine transporter gene. Hum Hered 45:165–168

    PubMed  CAS  Google Scholar 

  • Hadrich D, Berthold F, Steckhan E, Böisch H (1999) Synthesis and characterization of fluorescent ligands for the norepinephrine transporter: Potential neuroblastoma imaging agents. J Med Chem 42:3101–3108

    Article  PubMed  CAS  Google Scholar 

  • Hahn MK, Robertson D, Blakely RD (2003) A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J Neurosci 23:4470–4478

    PubMed  CAS  Google Scholar 

  • Hahn MK, Mazei-Robison MC, Blakely RD (2005) Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation. Mol Pharmacol 68:457–466

    Article  PubMed  CAS  Google Scholar 

  • Halushka MK, Fan JB, Bentley K, Hsie L, Shen NP, Weder A, Cooper R, Lipshutz R, Chakravarti A (1999) Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22:239–247

    Article  PubMed  CAS  Google Scholar 

  • Harder R, Böisch H (1985) Effects of monovalent ions on the transport of noradrenaline across the plasma membrane of neuronal cells (PC-12 cells). J Neurochem 45:1154–1162

    PubMed  CAS  Google Scholar 

  • Hatta E, Maruyama R, Marshall SJ, Imamura M, Levi R (1999) Bradykinin promotes ischemic norepinephrine release in guinea pig and human hearts. J Pharmacol Exp Ther 288:919–927

    PubMed  CAS  Google Scholar 

  • Hattori N, Schwaiger M (2000) Metalodobenzylguanidine scintigraphy of the heart: what have we learnt clinically? Eur J Nucl Med 27:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hebert C, Habimana A, Elie R, Reader TA (2001) Effects of chronic antidepressant treatments on 5-HT and NA transporters in rat brain: an autoradiographic study. Neurochem Int 38:63–74

    Article  PubMed  CAS  Google Scholar 

  • Hennings EC, Kiss JP, De Oliveira K, Toth PT, Vizi ES (1999) Nicotinic acetylcholine receptor antagonistic activity of monoamine uptake blockers in rat hippocampal slices. J Neurochem 73:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Hoefnagel CA, Voute PA, Dekraker J, Marcuse HR (1987) Radionuclide diagnosis and therapy of neural crest tumors using I-131 metaiodobenzylguanidine. J Nucl Med 28:308–314

    PubMed  CAS  Google Scholar 

  • Hoffman BJ, Hansson SR, Mezey E, Palkovits M (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 19:187–231

    Article  PubMed  CAS  Google Scholar 

  • Höpfner M, Sutter AP, Beck NI, Barthel B, Maaser K, Jockers-Scherubl MC, Zeitz M, Scherubl H (2002) Meta-iodobenzylguanidine induces growth inhibition and apoptosis of neuroendocrine gastrointestinal tumor cells. Int J Cancer 101:210–216

    Article  PubMed  CAS  Google Scholar 

  • Höpfner M, Sutter AP, Huether A, Ahnert-Hilger G, Scherubl H (2004) A novel approach in the treatment of neuroendocrine gastrointestinal tumors: additive antiproliferative effects of interferon-gamma and meta-iodobenzylguanidine. Bmc Cancer 4:23

    Article  PubMed  Google Scholar 

  • Howe JR, Wang JY, Yaksh TL (1983) Selective antagonism of the anti-nociceptive effect of intrathecally applied alpha-adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J Pharmacol Exp Ther 224:552–558

    PubMed  CAS  Google Scholar 

  • Ikeda T, Kitayama S, Morita K, Dohi T (2001) Nerve growth factor down-regulates the expression of norepinephrine transporter in rat pheochromocytoma (PC12) cells. Mol Brain Res 86:90–100

    Article  PubMed  CAS  Google Scholar 

  • Imamura M, Lander HM, Levi R (1996) Activation of histamine H-3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia-comparison with adenosine A(1)-receptors and alpha(2)-adrenoceptors. Circ Res 78:475–481

    PubMed  CAS  Google Scholar 

  • Inoue K, Itoh K, Yoshida K, Shimizu T, Suzuki T (2004) Positive association between T-182C polymorphism in the norepinephrine transporter gene and susceptibility to major depressive disorder in a Japanese population. Neuropsychobiology 50:301–304

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL (1963) The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol Chemother 21:523–537

    PubMed  CAS  Google Scholar 

  • Iversen LL (2000) Neurotransmitter transporters: fruitful targets for CNS drug discovery. Mol Psychiatry 5:357–362

    Article  PubMed  CAS  Google Scholar 

  • Iversen LL, Glowinski J, Axelrod J (1965) The uptake and storage of H3-norepinephrine in the reserpine-pretreated rat heart. J Pharmacol Exp Ther 150:173–183

    PubMed  CAS  Google Scholar 

  • Iversen LL, De Champlain J, Glowinski J, Axelrod J (1967) Uptake, storage and metabolism of norepinephrine in tissues of the developing rat. J Pharmacol Exp Ther 157:509–516

    PubMed  CAS  Google Scholar 

  • Iwasa H, Kurabayashi M, Nagai R, Nakamura Y, Tanaka T (2001) Genetic variations in five genes involved in the excitement of cardiomyocytes. J Hum Genet 46:549–552

    Article  PubMed  CAS  Google Scholar 

  • Iyengar S, Webster AA, Hemrick-Luecke SK, Xu JY, Simmons RMA (2004) Efficacy of duloxetine, a potent and balanced serotonin-norepinephrine reuptake inhibitor in persistent pain models in rats. J Pharmacol Exp Ther 311:576–584

    Article  PubMed  CAS  Google Scholar 

  • Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88:381–394

    Article  PubMed  CAS  Google Scholar 

  • Kaminski RM, Shippenberg TS, Witkin JM, Rocha BA (2005) Genetic deletion of the norepinephrine transporter decreases vulnerability to seizures. Neurosci Lett 382:51–55

    Article  PubMed  CAS  Google Scholar 

  • Kaye WH, Jimerson DC, Lake CR, Ebert MH (1985) Altered norepinephrine metabolism following long-term weight recovery in patients with anorexia-nervosa. Psychiatry Res 14:333–342

    Article  PubMed  CAS  Google Scholar 

  • Keller NR, Diedrich A, Appalsamy M, Tuntrakool S, Lonce S, Finney C, Caron MG, Robertson D (2004) Norepinephrine transporter-deficient mice exhibit excessive tachycardia and elevated blood pressure with wakefulness and activity. Circulation 110:1191–1196

    Article  PubMed  CAS  Google Scholar 

  • Keshet GI, Bendahan A, Su H, Mager S, Lester HA, Kanner BI (1995) Glutamate-101 is critical for the function of the sodium and chloride-coupled GABA transporter GAT-1. FEBS Lett 371:39–42

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Kim HS, Cubells JF, Kim KS (1999) A previously undescribed intron and extensive 5′ upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem 274:6507–6518

    Article  PubMed  CAS  Google Scholar 

  • Kimmel HL, Carroll FI, Kuhar MJ (2000) Dopamine transporter synthesis and degradation rate in rat striatum and nucleus accumbens using RTI-76. Neuropharmacology 39:578–585

    Article  PubMed  CAS  Google Scholar 

  • Kippenberger AG, Palmer DJ, Comer AM, Lipski J, Burton LD, Christie DL (1999) Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells: evidence for its association with secretory granules in PC12 cells. J Neurochem 73:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Kiyono Y, Kajiyama S, Fujiwara H, Kanegawa N, Saji H (2005) Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG. Eur J Nucl Med Mol Imaging 32:438–442

    Article  PubMed  Google Scholar 

  • Kleinberger-Doron N, Kanner BI (1994) Identification of tryptophan residues critical for the function and targeting of the gamma-aminobutyric acid transporter (subtype A). J Biol Chem 269:3063–3067

    PubMed  CAS  Google Scholar 

  • Kratochvil CJ, Newcorn JH, Arnold LE, Duesenberg D, Emslie GJ, Quintana H, Sarkis EH, Wagner KD, Gao HT, Michelson D, Biederman J (2005) Atomoxetine alone or combined with fluoxetine for treating ADHD with comorbid depressive or anxiety symptoms. J Am Acad Child Adolesc Psychiatry 44:915–924

    Article  PubMed  Google Scholar 

  • Kübler W, Strasser RH (1994) Signal-transduction in myocardial-ischemia. Eur Heart J 15:437–445

    PubMed  Google Scholar 

  • Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14:299–302

    Article  PubMed  CAS  Google Scholar 

  • Laakso A, Hietala J (2000) PET studies of brain monoamine transporters. Curr Pharm Des 6:1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Lake CR, Pickar D, Ziegler MG, Lipper S, Slater S, Murphy DL (1982) High plasma norepinephrine levels in patients with major affective-disorder. Am J Psychiatry 139:1315–1318

    PubMed  CAS  Google Scholar 

  • Langeloh A, Böisch H, Trendelenburg U (1987) The mechanism of the 3H-noradrenaline releasing effect of various substrates of uptake1: multifactorial induction of outward transport. Naunyn Schmiedebergs Arch Pharmacol 336:602–610

    Article  PubMed  CAS  Google Scholar 

  • Langer SZ, Raisman R, Briley M (1981) High-affinity [3H] DMI binding is associated with neuronal noradrenaline uptake in the periphery and the central nervous system. Eur J Pharmacol 72:423–424

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ma SK, Hu XP, Zhang GY, Fei J (2001) Norepinephrine transporter (NET) is expressed in cardiac sympathetic ganglia of adult rat. Cell Res 11:317–320

    Article  PubMed  CAS  Google Scholar 

  • Li W, Knowlton D, Woodward WR, Habecker BA (2003) Regulation of noradrenergic function by inflammatory cytokines and depolarization. J Neurochem 86:774–783

    Article  PubMed  CAS  Google Scholar 

  • Lingen B, Brüss M, Böisch H (1994) Cloning and expression of the bovine sodium-and chloride-dependent noradrenaline transporter. FEBS Lett 342:235–238

    Article  PubMed  CAS  Google Scholar 

  • Lorang D, Amara SG, Simerly RB (1994) Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci 14:4903–4914

    PubMed  CAS  Google Scholar 

  • Lu CC, Tseng CJ, Tang HS, Tung CS (2004) Orthostatic intolerance: potential pathophysiology and therapy. Chin J Physiol 47:101–109

    PubMed  Google Scholar 

  • Lu D, Yu K, Paddy MR, Rowland NE, Raizada MK (1996) Regulation of norepinephrine transport system by angiotensin II in neuronal cultures of normotensive and spontaneously hypertensive rat brains. Endocrinology 137:763–772

    Article  PubMed  CAS  Google Scholar 

  • Luque CA, Rey JA (1999) Sibutramine: a serotonin-norepinephrine reuptake-inhibitor for the treatment of obesity. Ann Pharmacother 33:968–978

    Article  PubMed  CAS  Google Scholar 

  • Macey DJ, Smith HR, Nader MA, Porrino LJ (2003) Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. J Neurosci 23:12–16

    PubMed  CAS  Google Scholar 

  • Mack F, Bönisch H (1979) Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn Schmiedebergs Arch Pharmacol 310:1–9

    Article  PubMed  CAS  Google Scholar 

  • Mash DC, Ouyang QJ, Qin YJ, Pablo J (2005) Norepinephrine transporter immunoblotting and radioligand binding in cocaine abusers. J Neurosci Methods 143:79–85

    Article  PubMed  CAS  Google Scholar 

  • Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464

    PubMed  CAS  Google Scholar 

  • Matsuoka I, Kumagai M, Kurihara K (1997) Differential and coordinated regulation of expression of norepinephrine transporter in catecholaminergic cells in culture. Brain Res 776:181–188

    Article  PubMed  CAS  Google Scholar 

  • McConathy J, Owens MJ, Kilts CD, Malveaux EJ, Camp VM, Votaw JR, Nemeroff CB, Goodman MM (2004) Synthesis and biological evaluation of [C-11]talopram and [C-11]talsupram: candidate PET ligands for the norepinephrine transporter. Nucl Med Biol 31:705–718

    Article  PubMed  CAS  Google Scholar 

  • Melikian HE, Ramamoorthy S, Tate CG, Blakely RD (1996) Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol Pharmacol 50:266–276

    PubMed  CAS  Google Scholar 

  • Meyer J, Wiedemann P, Okladnova O, Brüss M, Staab T, Stober G, Riederer P, Bönisch H, Lesch KP (1998) Cloning and functional characterization of the human norepinephrine transporter gene promoter—rapid communication. J Neural Transm 105:1341–1350

    Article  PubMed  CAS  Google Scholar 

  • Michael-Hepp J, Blum B, Bönisch H (1992) Characterization of the [H-3] desipramine binding-site of the bovine adrenomedullary plasma-membrane. Naunyn Schmiedebergs Arch Pharmacol 346:203–207

    Article  PubMed  CAS  Google Scholar 

  • Milano W, Petrella C, Casella A, Capasso A, Carrino S, Milano L (2005) Use of sibutramine, an inhibitor of the reuptake of serotonin and noradrenaline, in the treatment of binge eating disorder: a placebo-controlled study. Adv Ther 22:25–31

    PubMed  CAS  Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    PubMed  CAS  Google Scholar 

  • Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447

    PubMed  CAS  Google Scholar 

  • Novi AM (1968) An electron microscopic study of innervation of papillary muscles in rat. Anat Rec 160:123–141

    Article  PubMed  CAS  Google Scholar 

  • Obata H, Conklin D, Eisenach JC (2005) Spinal noradrenaline transporter inhibition by reboxetine and Xen2174 reduces tactile hypersensitivity after surgery in rats. Pain 113:271–276

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Soudijn W, von Wijngaarden I (2000) Serotonin, dopamine and norepinephrine transporters in the central nervous systemand their inhibitors. Prog Drug Res 54:61–119

    Google Scholar 

  • Ono K, Iwanaga Y, Mannami T, Kokubo Y, Tomoike H, Komamura K, Shioji K, Yasui N, Tago N, Iwai N (2003) Epidemiological evidence of an association between SLC6A2 gene polymorphism and hypertension. Hypertens Res 26:685–689

    Article  PubMed  CAS  Google Scholar 

  • Ordway GA, Jia WH, Li J, Zhu MY, Mandela P, Pan J (2005) Norepinephrine transporter function and desipramine: residual drug effects versus short-termregulation. J Neurosci Methods 143:217–225

    Article  PubMed  CAS  Google Scholar 

  • Owen D, Du LS, Bakish D, Lapierre YD, Hrdina PD (1999) Norepinephrine transporter gene polymorphism is not associated with susceptibility to major depression. Psychiatry Res 87:1–5

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Morgan WN, Plott SJ, Nemeroff CB (1997) Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305–1322

    PubMed  CAS  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of A cocaine-sensitive and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    Article  PubMed  CAS  Google Scholar 

  • Paczkowski F, Bönisch H, Bryan-Lluka LJ (2002) Pharmacological properties of the naturally occurring Ala457Pro variant of the human norepinephrine transporter. Pharmacogenetics 12:165–173

    Article  PubMed  CAS  Google Scholar 

  • Pan HL, Chen SR, Eisenach JC (1999) Intrathecal clonidine alleviates allodynia in neuropathic rats—interaction with spinalmuscarinic and nicotinic receptors. Anesthesiology 90:509–514

    Article  PubMed  CAS  Google Scholar 

  • Pantanowitz S, Bendahan A, Kanner BI (1993) Only one of the charged amino acids located in the transmembrane alpha-helices of the gamma-aminobutyric acid transporter (subtype A) is essential for its activity. J Biol Chem 268:3222–3225

    PubMed  CAS  Google Scholar 

  • Paton DM (1979) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 1–370

    Google Scholar 

  • Pirke KM, Kellner M, Philipp E, Laessle R, Krieg JC, Fichter MM (1992) Plasma norepinephrine after a standardized test meal in acute and remitted patients with anorexianervosa and in healthy controls. Biol Psychiatry 31:1074–1077

    Article  PubMed  CAS  Google Scholar 

  • Pörzgen P, Bönisch H, Brüss M (1995) Molecular-cloning and organization of the coding region of the human norepinephrine transporter gene. Biochem Biophys Res Commun 215:1145–1150

    Article  PubMed  Google Scholar 

  • Povlok SL, Amara S (1997) The structure and function of norepinephrine, dopamine, and serotonin transporters. In: Reith MEA (ed) Neurotransmitter transporters. Humana Press, Totowa, New Jersey, pp 1–28

    Google Scholar 

  • Raisman R, Sette M, Pimoule C, Briley M, Langer SZ (1982) High-affinity [3H]desipramine binding in the peripheral and central nervous system: a specific site associated with the neuronal uptake of noradrenaline. Eur J Pharmacol 78:345–351

    Article  PubMed  CAS  Google Scholar 

  • Rauhut AS, Mullins SN, Dwoskin LP, Bardo MT (2002) Reboxetine: attenuation of intravenous nicotine self-administration in rats. J Pharmacol Exp Ther 303:664–672

    Article  PubMed  CAS  Google Scholar 

  • Reddy SVR, Maderdrut JL, Yaksh TL (1980) Spinal-cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther 213:525–533

    PubMed  CAS  Google Scholar 

  • Reid AC, Mackins CJ, Seyedi N, Levi R, Silver RB (2004) Coupling of angiotensin II AT(1) receptors to neuronal NHE activity and carrier-mediated norepinephrine release in myocardial ischemia. Am J Physiol Heart Circ Physiol 286:H1448–H1454

    Article  PubMed  CAS  Google Scholar 

  • Ren ZG, Pörzgen P, Zhang JM, Chen XR, Amara SG, Blakely RD, Sieber-Blum M (2001) Autocrine regulation of norepinephrine transporter expression. Mol Cell Neurosci 17:539–550

    Article  PubMed  CAS  Google Scholar 

  • Ren ZG, Pörgzen PP, Youn YH, Sieber-Blum M (2003) Ubiquitous embryonic expression of the norepinephrine transporter. Dev Neurosci 25:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ressler KJ, Nemeroff CB (1999) Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol Psychiatry 46:1219–1233

    Article  PubMed  CAS  Google Scholar 

  • Roubert C, Cox P, Brüss M, Hamon M, Bönisch H, Giros B (2001) Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J Biol Chem 276:8254–8260

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G (1997) Mechanisms of biogenic amine neurotransmitter transporters. In: Reith MEA (ed) Neurotransmitter transporters. Humana Press, Totowa, pp 73–100

    Google Scholar 

  • Rumantir MS, Kaye DM, Jennings GL, Vaz M, Hastings JA, Esler MD (2000) Phenotypic evidence of faulty neuronal norepinephrine reuptake in essential hypertension. Hypertension 36:824–829

    PubMed  CAS  Google Scholar 

  • Runkel F, Brüss M, Nöthen MM, Stöber G, Propping P, Bönisch H (2000) Pharmacological properties of naturally occurring variants of the human norepinephrine transporter. Pharmacogenetics 10:397–405

    Article  PubMed  CAS  Google Scholar 

  • Ryu SH, Lee SH, Lee HJ, Cha JH, Ham BJ, Han CS, Choi MJ, Lee MS (2004) Association between norepinephrine transporter gene polymorphism and major depression. Neuropsychobiology 49:174–177

    Article  PubMed  CAS  Google Scholar 

  • Sanders JD, Happe HK, Bylund DB, Murrin LC (2005) Development of the norepinephrine transporter in the rat CNS. Neuroscience 130:107–117

    Article  PubMed  CAS  Google Scholar 

  • Savchenko V, Sung U, Blakely RD (2003) Cell surface trafficking of the antidepressant-sensitive norepinephrine transporter revealed with an ectodomain antibody. Mol Cell Neurosci 24:1131–1150

    Article  PubMed  CAS  Google Scholar 

  • Schömig E, Haass M, Richardt G (1991) Catecholamine release and arrhythmias in acute myocardial ischaemia. Eur Heart J 12Suppl F:38–47

    PubMed  Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B, Mozley PD, Dobson D, Shchukin E, Innis RB, Farde L (2004) PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 53:57–67

    Article  PubMed  CAS  Google Scholar 

  • Schroeder C, Tank J, Boschmann M, Diedrich A, Sharma AM, Biaggioni I, Luft FC, Jordan J (2002) Selective norepinephrine reuptake inhibition as a human model of orthostatic intolerance. Circulation 105:347–353

    Article  PubMed  CAS  Google Scholar 

  • Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine-and antidepressant-sensitive 1-norepinephrine transporter. J Comp Neurol 420:211–232

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JW, Blakely RD, DeFelice LJ (2003) Binding and transport in norepinephrine transporters—real-time, spatially resolved analysis in single cells using a fluorescent substrate. J Biol Chem 278:9768–9777

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JW, Novarino G, Piston DW, DeFelice LJ (2005) Substrate binding stoichiometry and kinetics of the norepinephrine transporter. J Biol Chem 280:19177–19184

    Article  PubMed  CAS  Google Scholar 

  • Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    PubMed  CAS  Google Scholar 

  • Seneca N, Andree B, Sjoholm N, Schou M, Pauli S, Mozley PD, Stubbs JB, Liow JS, Sovago J, Gulyas B, Innis R, Halldin C (2005) Whole-body biodistribution, radiation dosimetry estimates for the PET norepinephrine transporter probe (S,S)-[F-18]FMeNER-D-2 in non-human primates. Nucl Med Commun 26:695–700

    Article  PubMed  CAS  Google Scholar 

  • Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, Palant E, Craik DJ, Adams DJ, Alewood PF, Lewis RJ (2001) Two new classes of conopeptides inhibit the alpha 1-adrenoceptor and noradrenaline transporter. Nat Neurosci 4:902–907

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz BA, Klopper JH, Gordon JW (1978) Methylphenidate in 6-hydroxydopamine-treated developing rat pups—effects on activity and maze performance. Arch Neurol 35:463–469

    PubMed  CAS  Google Scholar 

  • Shearman LP, Meyer JS (1999) Cocaine up-regulates norepinephrine transporter binding in the rat placenta. Eur J Pharmacol 386:1–6

    Article  PubMed  CAS  Google Scholar 

  • Sieber-Blum M, Ren ZG (2000) Norepinephrine transporter expression and function in noradrenergic cell differentiations. Mol Cell Biochem 212:61–70

    Article  PubMed  CAS  Google Scholar 

  • Simpson D, Plosker GL (2004) Atomoxetine: a review of its use in adults with attention deficit hyperactivity disorder. Drugs 64:205–222

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Jensen TS (1999) Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 83:389–400

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Freissmuth M (2003) Oligomer formation by Na+-Cl-coupled neurotransmitter transporters. Eur J Pharmacol 479:229–236

    Article  PubMed  CAS  Google Scholar 

  • Smith NCE, Levi R (1999) LLC-PK1 cells stably expressing the human norepinephrine transporter: A functional model of carrier-mediated norepinephrine release in protracted myocardial ischemia. J Pharmacol Exp Ther 291:456–463

    PubMed  CAS  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther 165:78–86

    PubMed  CAS  Google Scholar 

  • Sonders MS, Quick M, Javitch JA (2005) How did the neurotransmitter cross the bilayer? A closer view. Curr Opin Neurobiol 15:1–9

    Article  CAS  Google Scholar 

  • Sora I, Wichems C, Takahashi N, Li XF, Zeng ZZ, Revay R, Lesch KP, Murphy DL, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine-and in serotonin-transporter knockout mice. Proc Natl Acad Sci U S A 95:7699–7704

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, Wichems C, Lesch KP, Murphy DL, Uhl GR (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci U S A 98:5300–5305

    Article  PubMed  CAS  Google Scholar 

  • Spencer T, Biederman J, Wilens T (2000) Pharmacotherapy of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 9:77–97

    PubMed  CAS  Google Scholar 

  • Stöber G, Nöthen MM, Pörzgen P, Brüss M, Bönisch H, Knapp M, Beckman H, Propping P (1996) Systematic search for variation in the human norepinephrine transporter gene: Identification of five naturally occurring missense mutations and study of association with major psychiatric disorders. Am J Med Genet 67:523–532

    Article  PubMed  Google Scholar 

  • Stöber G, Hebebrand J, Cichon S, Brüss M, Bönisch H, Lehmkuhl G, Poustka F, Schmidt M, Remschmidt H, Propping P, Nöthen MM (1999) Tourette syndrome and the norepinephrine transporter gene: results of a systematic mutation screening. Am J Med Genet 88:158–163

    Article  PubMed  Google Scholar 

  • Sucic S, Paczkowski FA, Runkel F, Bönisch H, Bryan-Lluka LJ (2002) Functional significance of a highly conserved glutamate residue of the human noradrenaline transporter. J Neurochem 81:344–354

    Article  PubMed  CAS  Google Scholar 

  • Sung U, Apparsundaram S, Galli A, Kahlig KM, Savchenko V, Schroeter S, Quick MW, Blakely RD (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23:1697–1709

    PubMed  CAS  Google Scholar 

  • Sung U, Jennings JL, Link AJ, Blakely RD (2005) Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins. Biochem Biophys Res Commun 333:671–678

    Article  PubMed  CAS  Google Scholar 

  • Szot P, Ashliegh EA, Kohen R, Petrie E, Dorsa DM, Veith R (1993) Norepinephrine transporter mRNA is elevated in the locus coeruleus following short-and long-term desipramine treatment. Brain Res 618:308–312

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  PubMed  CAS  Google Scholar 

  • Tejani-Butt SM (1992) [3H]Nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    PubMed  CAS  Google Scholar 

  • Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI, Staudinger J, Caron MG (2001) Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 30:121–134

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG (2003a) Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 278:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Gainetdinov RG, Caron MG (2003b) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg U (1991) The TiPS lecture: functional aspects of the neuronal uptake of noradrenaline. Trends Pharmacol Sci 12:334–337

    PubMed  CAS  Google Scholar 

  • Ungerer M, Chlistalla A, Richardt G (1996) Upregulation of cardiac uptake 1 carrier in ischemic and nonischemic rat heart. Circ Res 78:1037–1043

    PubMed  CAS  Google Scholar 

  • Urwin RE, Bennetts B, Wilcken B, Lampropoulos B, Beumont P, Clarke S, Russell J, Tanner S, Nunn KP (2002) Anorexia nervosa (restrictive subtype) is associated with a polymorphismin the novel norepinephrine transporter gene promoter polymorphic region. Mol Psychiatry 7:652–657

    Article  PubMed  CAS  Google Scholar 

  • Urwin RE, Bennetts BH, Wilcken B, Lampropoulos B, Beumont PJV, Russell JD, Tanner SL, Nunn KP (2003) Gene-gene interaction between the monoamine oxidase A gene and solute carrier family 6 (neurotransmitter transporter, noradrenalin)member 2 gene in anorexia nervosa (restrictive subtype). Eur J Hum Genet 11:945–950

    Article  PubMed  CAS  Google Scholar 

  • Vatta MS, Presas M, Bianciotti LG, Zarrabeitia V, Fernandez BE (1996) B and C types natriuretic peptides modulate norepinephrine uptake and release in the rat hypothalamus. Regul Pept 65:175–184

    Article  PubMed  CAS  Google Scholar 

  • Vatta MS, Presas MF, Bianciotti LG, Rodriguez-Fermepin M, Ambros R, Fernandez BE (1997) B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 18:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Zsilla G, Caron MG, Kiss JP (2004) Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J Neurosci 24:7888–7894

    Article  PubMed  CAS  Google Scholar 

  • Wakade AR, Wakade TD, Poosch M, Bannon MJ (1996) Noradrenaline transport and transporter mRNA of rat chromaffin cells are controlled by dexamethasone and nerve growth factor. J Physiol 494:67–75

    PubMed  CAS  Google Scholar 

  • Wiedemann P, Pörzgen P, Bönisch H, Brüss M (1998) The human noradrenaline transporter gene: a new and alternatively spliced noncoding 5′ exon. Naunyn Schmiedebergs Arch Pharmacol 358:R409

    Google Scholar 

  • Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    Article  PubMed  CAS  Google Scholar 

  • Wilson AA, Johnson DP, Mozley D, Hussey D, Ginovart N, Nobrega J, Garcia A, Meyer J, Houle S (2003) Synthesis and in vivo evaluation of novel radiotracers for the in vivo imaging of the norepinephrine transporter. Nucl Med Biol 30:85–92

    Article  PubMed  CAS  Google Scholar 

  • Wölfel R, Graefe KH (1992) Evidence for various tryptamines and related compounds acting as substrates of the platelet 5-hydroxytryptamine transporter. Naunyn Schmiedebergs Arch Pharmacol 345:129–136

    Article  PubMed  Google Scholar 

  • Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3:465–471

    Article  PubMed  CAS  Google Scholar 

  • Xu XH, Knight J, Brookes K, Mill J, Sham P, Craig I, Taylor E, Asherson P (2005) DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: No evidence for association. Am J Med Genet B Neuropsychiatr Genet 134B:115–118

    Article  PubMed  Google Scholar 

  • Yamada Y, Miyajima E, Tochikubo O, Matsukawa T, Ishii M (1989) Age-related-changes in muscle sympathetic-nerve activity in essential-hypertension. Hypertension 13:870–877

    PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Raizada MK (1999) Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. J Neurosci 19:2413–2423

    PubMed  CAS  Google Scholar 

  • Yang L, Wang YF, Li J, Faraone SV (2004) Association of norepinephrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiatry 43:1154–1158

    Article  PubMed  Google Scholar 

  • Yehuda R, Siever LJ, Teicher MH, Levengood RA, Gerber DK, Schmeidler J, Yang RK (1998) Plasma norepinephrine and 3-methoxy-4-hydroxyphenylglycol concentrations and severity of depression in combat posttraumatic stress disorder and major depressive disorder. Biol Psychiatry 44:56–63

    Article  PubMed  CAS  Google Scholar 

  • Young JB, Landsberg L (1998) Catecholamines and the adrenal medulla. In: Wilson JD, Foster DW, Kroenberg HM, Larsen PR (eds) Williams textbook of endocrinology, 9th edn. WB Saunders, Philadelphia, pp 665–728

    Google Scholar 

  • Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl-dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55

    Article  PubMed  CAS  Google Scholar 

  • Zhu MY, Ordway GA (1997) Down-regulation of norepinephrine transporters on PC12 cells by transporter inhibitors. J Neurochem 68:134–141

    Article  PubMed  CAS  Google Scholar 

  • Zhu MY, Blakely RD, Apparsundaram S, Ordway GA (1998) Down-regulation of the human norepinephrine transporter in intact 293-hNET cells exposed to desipramine. J Neurochem 70:1547–1555

    Article  PubMed  CAS  Google Scholar 

  • Zhu MY, Kyle PB, Hume AS, Ordway GA (2004) The persistent membrane retention of desipramine causes lasting inhibition of norepinephrine transporter function. Neurochem Res 29:419–427

    Article  PubMed  CAS  Google Scholar 

  • Zill P, Engel R, Baghai TC, Juckel G, Frodl T, Muller-Siecheneder F, Zwanzger P, Schule C, Minov C, Behrens S, Rupprecht R, Hegerl W, Moller HJ, Bondy B (2002) Identification of a naturally occurring polymorphism in the promoter region of the norepinephrine transporter and analysis in major depression. Neuropsychopharmacology 26:489–493

    Article  PubMed  CAS  Google Scholar 

  • Zuetenhorst H, Taal BG, Boot H, Olmos RV, Hoefnagel G (1999) Long-term palliation in metastatic carcinoid tumours with various applications of meta-iodobenzylguanidin (MIBC): pharmacological MIBG, I-131-labelled MIBG and the combination. Eur J Gastroenterol Hepatol 11:1157–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bönisch, H., Brüss, M. (2006). The Norepinephrine Transporter in Physiology and Disease. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_20

Download citation

Publish with us

Policies and ethics