Skip to main content

Mesenchymal Stem Cells: Isolation, In Vitro Expansion and Characterization

  • Chapter
Stem Cells

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 174))

Abstract

Mesenchymal stem cells (MSC), one type of adult stem cell, are easy to isolate, culture, and manipulate in ex vivo culture. These cells have great plasticity and the potential for therapeutic applications, but their properties are poorly understood. MSCs can be found in bone marrow and in many other tissues, and these cells are generally identified through a combination of poorly defined physical, phenotypic, and functional properties; consequently, multiple names have been given to these cell populations. Murine MSCs have been directly applied to a wide range of murine models of diseases, where they can act as therapeutic agents per se, or as vehicles for the delivery of therapeutic genes. In addition to their systemic engraftment capabilities, MSCs show great potential for the replacement of damaged tissues such as bone, cartilage, tendon, and ligament. Their pharmacological importance is related to four points: MSCs secrete biologically important molecules, express specific receptors, can be genetically manipulated, and are susceptible to molecules that modify their natural behavior. Due to their low frequency and the lack of knowledge on cell surface markers and their location of origin, most information concerning MSCs is derived from in vitro studies. The search for the identity of the mesenchymal stem cell has depended mainly on three culture systems: the CFU-F assay, the analysis of bone marrow stroma, and the cultivation of mesenchymal stem cell lines. Other cell populations, more or less related to the MSC, have also been described. Isolation and culture conditions used to expand these cells rely on the ability of MSCs, although variable, to adhere to plastic surfaces. Whether these conditions selectively favor the expansion of different bone marrow precursors or cause similar cell populations to acquire different phenotypes is not clear. The cell populations could also represent different points of a hierarchy or a continuum of differentiation. These issues reinforce the urgent need for a more comprehensive view of the mesenchymal stem cell identity and characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abukawa H, Shin M, Williams WB, Vacanti JP, Kaban LB, Troulis MJ (2004) Reconstruction of mandibular defects with autologous tissue-engineered bone. J Oral Maxillofac Surg 62:601–606

    PubMed  Google Scholar 

  • Alfonso ZZ, Forneck ED, Allebrandt WF, Nardi NB (2000) Establishment of an adherent cell layer from human umbilical cord blood. Genet Mol Biol 23:519–522

    Article  Google Scholar 

  • Anjos-Afonso F, Siapati EK, Bonnet D (2004) In vivo contribution of murine mesenchymal stem cells intomultiple cell-types under minimal damage conditions. JCell Sci 117:5655–5664

    CAS  Google Scholar 

  • Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCAREAMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  • Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95:3908–3913

    Article  CAS  PubMed  Google Scholar 

  • Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249

    Article  CAS  PubMed  Google Scholar 

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    CAS  PubMed  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  PubMed  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  PubMed  Google Scholar 

  • Baxter MA, Wynn RF, Deakin JA, Bellantuono I, Edington KG, Cooper A, Besley GT, Church HJ, Wraith JE, Carr TF, Fairbairn LJ (2002) Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. Blood 99:1857–1859

    Article  PubMed  Google Scholar 

  • Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287:98–105

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Cossu G (1999) Uno, nessuno e centomila: searching for the identity of mesodermal progenitors. Exp Cell Res 251:257–263

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  CAS  PubMed  Google Scholar 

  • Breems DA, Blokland EAW, Siebel KE, Mayen AEM, Engels LJA, Ploemacher RE (1998) Stroma-contact prevents loss of hematopoietic stemcell quality during ex vivo expansion of CD34+ mobilized peripheral blood stem cells. Blood 91:111–117

    CAS  PubMed  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  CAS  PubMed  Google Scholar 

  • Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    CAS  PubMed  Google Scholar 

  • Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303:1198–1201

    Article  CAS  PubMed  Google Scholar 

  • Chang SC, Chuang H, Chen YR, Yang LC, Chen JK, Mardini S, Chung HY, Lu YL, Ma WC, Lou J (2004) Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J Surg Res 119:85–91

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu D, Tadokoro M, Hirochika R, Ohgushi H, Tanaka J, Tateishi T (2004a) Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochem Biophys Res Commun 322:50–55

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004b) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410–411

    CAS  PubMed  Google Scholar 

  • Colter DC, Class R, DiGirolamo CM, Prockop DJ (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A 97:3213–3218

    Article  CAS  PubMed  Google Scholar 

  • Cordero EAA, Silla LMR, Cañedo AD, Allebrandt WF, Fogliatto L, Nardi NB (2004) Interaction between normal and CML hematopoietic progenitors and stroma influences abnormal hematopoietic development. Stem Cells Devel 13:225–228

    CAS  Google Scholar 

  • Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Herve P, Etievent JP, Kantelip JP (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108Suppl 1:II253–II258

    PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers J-M, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918

    PubMed  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    PubMed  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152

    Article  CAS  PubMed  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG(1976) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Google Scholar 

  • Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    CAS  PubMed  Google Scholar 

  • Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844

    Article  CAS  PubMed  Google Scholar 

  • Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC (2004) Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 78:83–88

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Gorskaja UF, Julagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y, Jin D, Takai S, Miyazaki M, Egashira K, Imada T, Iwasaka T, Matsubara H (2003) Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res 93:980–989

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  CAS  PubMed  Google Scholar 

  • Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2004) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827

    PubMed  Google Scholar 

  • Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J, Umezawa A (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51–59

    Article  CAS  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85:929–940

    CAS  PubMed  Google Scholar 

  • Gronthos S, Graves SE, Simmons PJ (1998) Isolation, purification and in vitromanipulation of human bone marrow stromal precursor cells. In: Beresford JN, Owen ME (eds) Marrow stromal cell culture. Cambridge University Press, New York, pp 26–42

    Google Scholar 

  • Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, LeDeist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) Aserious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    Article  PubMed  Google Scholar 

  • Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X, Zhao RC (2003) Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 141:342–349

    Article  CAS  PubMed  Google Scholar 

  • Huang JI, Yoo JU, Goldberg VM (2004) Orthopaedic applications of stem cells. In: Blau H, Melton D, Moore M, Thomas ED, Verfaillie C, Weissman I, West M (eds) Handbook of stem cells. Vol. 2. Elsevier, New York, pp 773–784

    Google Scholar 

  • Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20:249–258

    PubMed  Google Scholar 

  • Hung SC, Chang CF, Ma HL, Chen TH, Low-Tone Ho L (2004) Gene expression profiles of early adipogenesis in human mesenchymal stem cells. Gene 340:141–150

    CAS  PubMed  Google Scholar 

  • In’ t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Google Scholar 

  • Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425

    Article  CAS  PubMed  Google Scholar 

  • Jeong JA, Hong SH, Gang EJ, Ahn C, Hwang SH, Yang IH, Han H, Kim H (2005) Differential gene expression profiling of human umbilical cord blood-derived mesenchymal stem cells by DNA microarray. Stem Cells 23:584–593

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle and brain. Exp Hematol 30:896–904

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J (2004) Gene therapy. Side effects sideline hemophilia trial. Science 304:1423–1425

    CAS  PubMed  Google Scholar 

  • Kassem M, Kristiansen M, Abdallah BM (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95:209–214

    Article  CAS  PubMed  Google Scholar 

  • Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW (2004) Transfer of fetal cells with multilineage potential to maternal tissue. JAMA 292:75–80

    Article  CAS  PubMed  Google Scholar 

  • Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Yasu T, Ueba H, Sata M, Hashimoto S, Kuroki M, Saito M, Kawakami M (2004) Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol 32:1238–1245

    CAS  PubMed  Google Scholar 

  • Koç ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    PubMed  Google Scholar 

  • Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W(2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  PubMed  Google Scholar 

  • Kojima S (1998) Hematopoietic growth factors and marrow stroma in aplastic anemia. Int J Hematol 68:19–28

    Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716

    Article  CAS  PubMed  Google Scholar 

  • Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188

    CAS  PubMed  Google Scholar 

  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov SA, Friedenstein AJ, Robey PG (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 97:561–570

    Article  CAS  PubMed  Google Scholar 

  • Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, Kawakami Y, Ikeda Y (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    PubMed  Google Scholar 

  • Le Visage C, Dunham B, Flint P, Leong KW(2004) Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa. Tissue Eng 10:1426–1435

    PubMed  Google Scholar 

  • Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609

    CAS  PubMed  Google Scholar 

  • Lodie TA, Blickarz CE, Devarakonda TJ, He C, Dash AB, Clarke J, Gleneck K, Shihabuddin L, Tubo R (2002) Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Eng 8:739–751

    Article  CAS  PubMed  Google Scholar 

  • Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    CAS  PubMed  Google Scholar 

  • Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    CAS  PubMed  Google Scholar 

  • McBride C, Gaupp D, Phinney DG (2003) Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy 5:7–18

    Article  CAS  PubMed  Google Scholar 

  • Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stemcell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711

    PubMed  Google Scholar 

  • Mihara K, Imai C, Coustan-Smith E, Dome JS, Dominici M, Vanin E, Campana D (2003) Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 120:846–849

    Article  CAS  PubMed  Google Scholar 

  • Moscoso I, Centeno A, Lopez E, Rodriguez-Barbosa JI, Santamarina I, Filgueira P, Sanchez MJ, Dominguez-Perles R, Penuelas-Rivas G, Domenech N (2005) Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc 37:481–482

    Article  CAS  PubMed  Google Scholar 

  • Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113:1161–1166

    CAS  PubMed  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  CAS  PubMed  Google Scholar 

  • Nardi NB (2005) All the adult stem cells, where do they all come from? An external source for organ-specific stem cell pools. Med Hypoth 64:811–817

    Article  CAS  Google Scholar 

  • Nardi NB, Alfonso ZZC (1999) The hematopoietic stroma. Braz J Med Biol Res 32:601–609

    Article  CAS  PubMed  Google Scholar 

  • Nathwani AC, Davidoff AM, Tuddenham EG (2004) Prospects for gene therapy of haemophilia. Haemophilia 10:309–318

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue K, Choolani M, Chan J, de la Fuente J, Kumar S, Campagnoli C, Bennett PR, Roberts IA, Fisk NM (2003) Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 9:497–502

    CAS  PubMed  Google Scholar 

  • O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182

    PubMed  Google Scholar 

  • Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844–2853

    CAS  PubMed  Google Scholar 

  • Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100:1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Olivares EL, Ribeiro VP, Werneck de Castro JP, Ribeiro KC, Mattos EC, Goldenberg RC, Mill JG, Dohmann HF, dos Santos RR, de Carvalho AC, Masuda MO (2004) Bone marrow stromal cells improve cardiac performance in healed infarcted rat hearts. Am J Physiol Heart Circ Physiol 287:H464–H470

    Article  CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  • Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100:8407–8411

    Article  CAS  PubMed  Google Scholar 

  • Otto WR, Rao J (2004) Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 37:97–110

    Article  CAS  PubMed  Google Scholar 

  • Owen M (1985) Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA (ed) Bone and mineral research. Vol. 3. Elsevier, New York, pp 1–25

    Google Scholar 

  • Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278

    Article  CAS  PubMed  Google Scholar 

  • Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 92:4857–4861

    CAS  PubMed  Google Scholar 

  • Pereira RF, O’Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, Simon D, Livezey K, Prockop DJ (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A 95:1142–1147

    CAS  PubMed  Google Scholar 

  • Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    PubMed  Google Scholar 

  • Phinney DG (2002) Building a consensus regarding the nature and origin of mesenchymal stem cells. J Cell Biochem Suppl 38:7–12

    PubMed  Google Scholar 

  • Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72:570–585

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pochampally RR, Neville BT, Schwarz EJ, Li MM, Prockop DJ (2004) Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci U S A 101:9282–9285

    Article  CAS  PubMed  Google Scholar 

  • Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  CAS  PubMed  Google Scholar 

  • Pranke P, Failace RR, Allebrandt WF, Steibel G, Schmidt F, Nardi N (2001) Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematol 105:71–76

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  • Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 938:231–233

    CAS  PubMed  Google Scholar 

  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  CAS  PubMed  Google Scholar 

  • Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFbeta family members. J Orthop Sci 8:740–748

    Article  PubMed  Google Scholar 

  • Rombouts WJ, Ploemacher RE (2003) Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17:160–170

    Article  CAS  PubMed  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  CAS  PubMed  Google Scholar 

  • Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287:289–300

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y (2005) Human mesenchymal stem cells xenografted directly to rat liver differentiated into human hepatocytes without fusion. Blood Apr 7; [Epub ahead of print]

    Google Scholar 

  • Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  • Selkirk SM (2004) Gene therapy in clinical medicine. Postgrad Med J 80:560–570

    Article  CAS  PubMed  Google Scholar 

  • Seshi B, Kumar S, Sellers D (2000) Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis 26:234–246

    Article  CAS  PubMed  Google Scholar 

  • Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ (2003) Mesenchymal stem cells. Arch Med Res 34:565–571

    Article  CAS  PubMed  Google Scholar 

  • Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL, Santos AR, Zago MA (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21:661–669

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  • Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 100:2397–2402

    Article  CAS  PubMed  Google Scholar 

  • Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    CAS  PubMed  Google Scholar 

  • Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    CAS  PubMed  Google Scholar 

  • Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225

    Article  CAS  PubMed  Google Scholar 

  • Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291:868–871

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli M (1984). Marrow adipose cells and hemopoiesis: an interpretative review. Exp Hematol 12:139–146

    CAS  PubMed  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  CAS  PubMed  Google Scholar 

  • Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG (2001) MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 19:408–418

    Article  CAS  PubMed  Google Scholar 

  • Tuli R, Seghatoleslami MR, Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003) A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol 23:37–49

    Article  CAS  PubMed  Google Scholar 

  • Verfaillie CM (1992) Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 79:2821–2826

    CAS  PubMed  Google Scholar 

  • Verfaillie CM (2002) Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12:502–508

    Article  CAS  PubMed  Google Scholar 

  • Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-R, Yan Z-J, Wolf NS (1990) Dissecting the hematopoietic microenvironment. VI. The effects of several growth factors on the growth of murine bone marrow CFU-F. Exp Hematol 18:341–347

    CAS  PubMed  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ’stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  • Whetton AD, Grahan GJ (1999) Homing and mobilization in the stem cell niche. Trends Cell Biol 9:233–238

    Article  CAS  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  PubMed  Google Scholar 

  • Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    Article  CAS  PubMed  Google Scholar 

  • Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    CAS  PubMed  Google Scholar 

  • Zipori D (2004) Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis 33:211–215

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyer Nardi, N., da Silva Meirelles, L. (2006). Mesenchymal Stem Cells: Isolation, In Vitro Expansion and Characterization. In: Wobus, A.M., Boheler, K.R. (eds) Stem Cells. Handbook of Experimental Pharmacology, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31265-X_11

Download citation

Publish with us

Policies and ethics