Skip to main content

Fluid–Structure Interaction in Healthy, Diseased and Endovascularly Treated Abdominal Aortic Aneurysms

  • Chapter
  • First Online:
Biomechanics and Mechanobiology of Aneurysms

Abstract

Abdominal aortic aneurysms are irreversible dilations of the infrarenal aorta. If left untreated the aneurysm may continue to grow until eventually rupturing. Endovascular aneurysm repair (EVAR) is an established method for the treatment of abdominal aortic aneurysms (AAAs). Complications arising from this treatment include endoleaks and graft migration. Computational methods such as FEA, CFD and FSI can be used to investigate both the disease manifestation and its treatment. FSI is a particularly useful tool for the investigation of EVAR as both the fluid forces acting on the graft and stresses on the aneurysm wall are of interest. This work investigates the stresses and haemodynamics in healthy, diseased and treated aneurysms through the use of FSI. Higher stresses and more disturbed haemodynamics are seen in aneurysms than in a healthy aorta. The insertion of a stent-graft significantly reduces the aneurysm wall stress and redistributes it. The stent-graft is subject to large haemodynamic forces which can cause migration of the device. These forces do not necessarily act primarily in a caudal direction, hence resulting in a non-caudal migration. The inclusion of patient-specific data such as patient-specific pressure and graft oversize was investigated. These were found to have a large effect on the accuracy of the results and in future best efforts should be made to include as much patient-specific data as possible in numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biasseti, J., Gasser, T.C., Auer, M., Hedin, U., Labruto, F.: Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation. Ann. Biomed. Eng. 38(2), 380–390 (2010)

    Article  Google Scholar 

  2. Catanese III, J., Cooke, D., Maas, C., Pruitt, L.: Mechanical properties of medical grad expanded polytetraflouroethylene: The effects of intermodal distance, density, and displacement rate. J. Biomed. Mat. Res. 48(2), 187–192 (1999)

    Article  Google Scholar 

  3. Conners III, M.S., Sternbergh, W.C., Carter, G., Tonnessen, B.H., Yoselevitz, M., Money, S.R.: Endograft migration one to four years after endovascular abdominal aortic aneurysm repair with the Aneurx device: A cautionary note. J. Vasc. Surg. 36(3), 476–484 (2002)

    Article  Google Scholar 

  4. Corriere, M.A., Feurer, I.D., Becker, S.Y., Dattilo, J.B., Passman, M.A., Guzman, R.J., Naslund, T.C.: Endoleak following endovascular abdominal aortic aneurysm repair. Ann. Surg. 239, 800–807 (2004)

    Article  Google Scholar 

  5. De Hart, J., Peters, G.W.M., Schreurs, P.J.G., Baaijens, F.P.T.: A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36, 103–112 (2003)

    Article  Google Scholar 

  6. Figueroa, C.A., Taylor, C.A., Yeh, V., Chiou, A.J., Gorrepati, M.L., Zarins, C.K.: Preliminary 3D computational analysis of the relationship between aortic displacement force and direction of endograft movement. J. Vasc. Surg. 51(6), 1488–1497 (2010)

    Article  Google Scholar 

  7. Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.C., Hughes, T.J.R., Taylor, C.A.: A coupled momentum method for modelling blood flow in three-dimensional deformable arteries. Comp. Meth. Appl. Mech. Eng. 195, 5685–5706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fraser, K.H., Li, M.X., Lee, W.T., Easson, W.J., Hoskins, P.R.: Fluid-structure interaction in axially symmetric models of abdominal aortic aneurysms. Proc. Inst. Mech. Eng. H 223(2), 195–209 (2009)

    Google Scholar 

  9. Gasser, T.C., Auer, M., Labruto, F., Swedenborg, J., Roy, J.: Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. Euro. J. Vasc. Endovasc. Surg. 40, 176–185 (2010)

    Article  Google Scholar 

  10. Gee, M.W., Reeps, C., Eckstein, H.H., Wall, W.A.: Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42(11), 1732–1739 (2009)

    Article  Google Scholar 

  11. Greenber, R.K., Turc, A., Haulon, S., Srivastava, S.D., Sarac, T.P., O’Hara, P.J., Lyden, S.P., Ouriel, K.: Stent-graft migration: A reappraisal of analysis methods and proposed revised definition. J. Endovasc. Ther. 11, 353–363 (2004)

    Article  Google Scholar 

  12. Howell, B.A., Kim, T., Cheer, A., Dwyer, H., Saloner, D., Chuter, T.A.M.: Computational fluid dynamics within bifurcated abdominal aortic stent-grafts. J. Endovasc. Ther. 14(2), 138–143 (2007)

    Article  Google Scholar 

  13. Kleinstreuer, C., Li, Z., Basciano, C.A., Seelecke, S., Farber, M.A.: Computational mechanics of Nitinol stent-grafts. J. Biomech. 41, 2370–2378 (2008)

    Article  Google Scholar 

  14. Kratzberg, J.A., Golzarian, J., Raghavan, M.L.: Role of graft oversizing in the fixation strength of barbed endovascular grafts. J. Vasc. Surg. 49(6), 1453–1553 (2009)

    Article  Google Scholar 

  15. Leung, J.H., Wright, A.R., Cheshire, N., Crane, J., Thom, S.A., Hughes, A.D., Xu, Y.: Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed. Eng. Online 5, 33 (2006)

    Article  Google Scholar 

  16. Li, Z., Kleinstreuer, C.: Fluid structure interaction effects on sac-blood pressure and wall stress in a stented aneurysm. J. Biomech. Eng. 127, 662–671 (2005)

    Article  Google Scholar 

  17. Li, Z., Kleinstreuer, C.: Effects of major endoleaks on a stented abdominal aortic aneurysm. J. Biomech. Eng. 128, 697–706 (2006)

    Article  Google Scholar 

  18. Li, Z., Kleinstreuer, K.: Analysis of biomechanical factors affecting stent graft migration in an abdominal aortic aneurysm model. J. Biomech. 39(12), 2264–2273 (2005)

    Article  Google Scholar 

  19. Mills, C.J., Gabe, I.T., Gault, J.H., Mason, D.T., Ross, J., Braunwuld, E., Shillingford, J.P.: Pressure flow relationship and vascular impedance in man. Card. Res. 4(4), 405–417 (1970)

    Article  Google Scholar 

  20. Molony, D.S., Callanan, A., Kavanagh, E.G., Walsh, M.T., McGloughlin, T.: Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft. Biomed. Eng. Online 8, 24 (2009)

    Article  Google Scholar 

  21. Molony, D.S., Kavanagh, E.G., Walsh, M.T., McGloughlin, T.M.: A computational study of the magnitude and direction of migration forces in patient-specific abdominal aortic aneurysm stent-grafts. Euro. J. Vasc. Endovasc. Surg. 40(3), 332–339 (2010)

    Article  Google Scholar 

  22. Morris, L., Delassus, P., Walsh, M., McGloughlin, T.: A mathematical model to predict the in vivo distraction forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysm (AAA). J. Biomech. 37(7), 1087–1095 (2004)

    Article  Google Scholar 

  23. Morris, L., Delassus, P., Callanan, A., Walsh, M., Wallis, F., Grace, P., McGloughlin, T.: 3-D numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 127(5), 767–775 (2005)

    Article  Google Scholar 

  24. Olufsen, M.S.: Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276, 257–268 (1999)

    Google Scholar 

  25. Raghavan, M.L., Webster, M.W., Vorp, D.A.: Ex vivo biomechanical behaviour of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24(5), 573–582 (1996)

    Article  Google Scholar 

  26. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4), 475–482 (2000)

    Article  Google Scholar 

  27. Sampaio, S.M., Panneton, J.M., Mozes, G., Andrews, J.C., Noel, A.A., Kalra, M., Bower, T.C., Cherry, K.J., Sullivan, T.M., Gloviczki, P.: Aortic neck dilation after endovascular abdominal aortic aneurysm repair: Should oversizing be blamed? Ann. Vasc. Surg. 20(3), 338–345 (2006)

    Article  Google Scholar 

  28. Scotti, C.M., Finol, E.A.: Compliant biomechanics of abdominal aortic aneurysms: A fluid structure interaction study. Comp. Struct. 85, 1097–1113 (2007)

    Article  Google Scholar 

  29. Sternbergh, W.C., Money, S.R., Greenberg, R.K., Investigators, Zenith: Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage and aortic neck dilation: Results from the Zenith multicenter trial. J. Vasc. Surg. 39(1), 220–226 (2004)

    Article  Google Scholar 

  30. Torii, R., Wood, N.B., Hadjiloizou, N., Dowsey, A.W., Wright, A.R., Hughes, A.D., Davies, J., Francis, D.P., Mayet, J., Yang, G., Thom, S.A., Xu, Y.: Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Comm. Num. Meth. Eng. 25, 565–580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Van Prehn, J., van Herwaarden, J.A., Vincken, K.L., Verhagen, H.J., Moll, F.L., Bartels, L.W.: Asymmetric aortic expansion of the aneurysm neck analysis and visualization of shape changes with electrocardiogram-gated magnetic resonance imaging. J. Vasc. Surg. 49(6), 1395–1402 (2009)

    Article  Google Scholar 

  32. Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for three-dimensional finite element modelling of blood flow and pressure in arteries. Comp. Meth. Appl. Mech. Eng. 195, 3776–3796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, D.H.J., Makaroun, M., Webster, M.W., Vorp, D.A.: Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123(6), 536–539 (2001)

    Article  Google Scholar 

  34. Xenos, M., Rambhia, S.H., Alemu, Y., Einav, S., Labropoulos, N., Tassiopoulos, A., Ricotta, J.J., Bluestein, D. Patient-based abdominal aortic aneurysm risk prediction with fluid structure interaction modelling, Ann. Biomed. Eng. doi: 10.1007/s10439-010-0094-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molony, D.S., Broderick, S., Callanan, A., McGloughlin, T.M., Walsh, M.T. (2011). Fluid–Structure Interaction in Healthy, Diseased and Endovascularly Treated Abdominal Aortic Aneurysms. In: McGloughlin, T. (eds) Biomechanics and Mechanobiology of Aneurysms. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_85

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18094-1

  • Online ISBN: 978-3-642-18095-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics