Skip to main content

Positron Emission Tomography of the Heart: Methodology, Findings in the Normal and the Diseased Heart, and Clinical Applications

  • Chapter
PET

Abstract

Studies of myocardial blood flow and substrate metabolism of the human heart with positron emission tomography (PET) have proved clinically useful in patients with coronary artery disease (CAD). The studies allow a comprehensive characterization of the extent and severity of CAD, detection of preclinical coronary disease, and, most importantly, identification of myocardial viability. More broadly, PET provides important novel insights into the physiology and biology of the normal and the diseased heart and explores beneficial effects of new therapeutic interventions and pharmaceuticals. The continued growth of an already large body of scientific literature on cardiac PET is fully acknowledged. However, a complete and well-deserved account of all these accomplishments is beyond the scope of this chapter. If some of these accomplishments are not included, this by no means implies judgment about their quality or relevance but is dictated by the need for brevity. Accordingly, the following chapter focuses on technical aspects of PET that are important for and are unique to the study of the human heart, it reviews observations made with PET in the normal heart and in cardiac disease, and it closes with a discussion of current clinical indications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman EJ, Phelps ME, Wisenberg G, Schelbert HR, Kuhl DE. Electrocardiographic gating in positron emission computed tomography. J Comp Assist Tomogr. 1979; 3: 733–739.

    CAS  Google Scholar 

  2. Yamashita K, Tamaki N, Yonekura Y, et al. Quantitative analysis of regional wall motion by gated myocardial positron emission tomography: Validation and comparison with left ventriculography. J Nucl Med. 1989; 30: 1775–1786.

    PubMed  CAS  Google Scholar 

  3. Yamashita K, Tamaki N, Yonekura Y, et al. Regional wall thickening of left ventricle evaluated by gated positron emission tomography in relation to myocardial perfusion and glucose metabolism. J Nucl Med. 1991; 32: 679–685.

    PubMed  CAS  Google Scholar 

  4. Porenta G, Kuhle W, Sinha S, et al. Parameter estimation of cardiac geometry by ECG-gated PET imaging: validation using magnetic resonance imaging and echocardiography. J Nucl Med. 1995; 36: 1123–1129.

    PubMed  CAS  Google Scholar 

  5. Boyd HL, Gunn RN, Marinho NV, et al. Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med. 1996; 23: 1594–1602.

    Article  PubMed  CAS  Google Scholar 

  6. Boyd HL, Rosen SD, Rimoldi O, Cunningham VJ, Camici PG. Normal values for left ventricular volumes obtained using gated PET. Gior Ital Cardiol. 1998; 28: 1207–1214.

    CAS  Google Scholar 

  7. Hattori N, Bengel FM, Mehilli J, et al. Global and regional functional measurements with gated FDG PET in comparison with left ventriculography. Eur J Nucl Med. 2001; 28: 221–229.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comp Assist Tomogr. 1979; 3: 299–308.

    Article  CAS  Google Scholar 

  9. Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med. 1983; 24: 987–996.

    PubMed  CAS  Google Scholar 

  10. Sinha S, Sinha U, Czernin J, Porenta G, Schelbert HR. Noninvasive assessment of myocardial perfusion and metabolism: feasibility of registering gated MR and PET images. Am J Roentgen. 1995; 164: 301–307.

    CAS  Google Scholar 

  11. Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy [see comments]. JAm Coll Cardiol. 1989; 13: 317–324.

    Article  CAS  Google Scholar 

  12. Nienaber CA, Gambhir SS, Mody FV, et al. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophie cardiomyopathy. Circulation. 1993; 87: 1580–1590.

    Article  PubMed  CAS  Google Scholar 

  13. Parodi O, Schelbert HR, Schwaiger M, Hansen H, Selin C, Hoffman EJ. Cardiac emission computed tomography: underestimation of regional tracer concentrations due to wall motion abnormalities. J Comp Assist Tomogr. 1984; 8: 1083–1092.

    Article  CAS  Google Scholar 

  14. Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation. 1992; 86: 1004–1107.

    Article  PubMed  CAS  Google Scholar 

  15. Porenta G, Kuhle W, Czernin J, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med. 1992; 33: 1628–1636.

    PubMed  CAS  Google Scholar 

  16. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med. 1998; 25: 1313–1321.

    Article  PubMed  CAS  Google Scholar 

  17. Choi Y, Hawkins RA, Huang SC, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med. 1991; 32: 733–738.

    PubMed  CAS  Google Scholar 

  18. Blanksma PK, Willemsen AT, Meeder JG, et al. Quantitative myocardial mapping of perfusion and metabolism using parametric polar map displays in cardiac PET. J Nuel Med. 1995; 36: 153–158.

    CAS  Google Scholar 

  19. Hicks K, Ganti G, Mullani N, Gould KL. Automated quantitation of three-dimensional cardiac positron emission tomography for routine clinical use. J Nucl Med. 1989; 30: 1787–1797.

    PubMed  CAS  Google Scholar 

  20. Laubenbacher C, Rothley J, Sitomer J, et al. An automated analysis program for the evaluation of cardiac PET studies: Initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med. 1993; 34: 968–978.

    PubMed  CAS  Google Scholar 

  21. Gould KL. Myocardial perfusion after cholesterol lowering. J Atheroscler Thromb. 1996; 3: 59–61.

    PubMed  CAS  Google Scholar 

  22. Wu HM, Hoh CK, Buxton DB, et al. Quantification of myocardial blood flow using dynamic nitrogen-13-ammonia PET studies and factor analysis of dynamic structures. J Nucl Med. 1995; 36: 2087–2093.

    PubMed  CAS  Google Scholar 

  23. Wu HM, Hoh CK, Choi Y, et al. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med. 1995; 36: 1714–1722.

    PubMed  CAS  Google Scholar 

  24. Hermansen F, Ashburner J, Spinks TJ, Kooner JS, Camici PG, Lammertsma AA. Generation of myocardial factor images directly from the dynamic oxygen-15-water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nuel Med. 1998; 39: 1696–1702.

    CAS  Google Scholar 

  25. Renkin EM. Transport of potassium-42 from blood tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959; 197: 1205–1210.

    PubMed  CAS  Google Scholar 

  26. Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand. 1963; 58: 292–305.

    Article  PubMed  CAS  Google Scholar 

  27. Schön HR, Schelbert HR, Robinson G, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. I. Kinetics of C-11 palmitic acid in normal myocardium. Am Heart J. 1982; 103: 532–547.

    Article  PubMed  Google Scholar 

  28. Schelbert HR, Henze E, Schon HR, et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J. 1983; 105: 492–504.

    Article  PubMed  CAS  Google Scholar 

  29. Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest. 1987; 79: 359–366.

    Article  PubMed  CAS  Google Scholar 

  30. Bergmann SR, Fox KA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984; 70: 724–733.

    Article  PubMed  CAS  Google Scholar 

  31. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. JAm Coll Cardiol. 1989; 14: 639–652.

    Article  CAS  Google Scholar 

  32. Iida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA. Myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med. 1995; 36: 78–85.

    PubMed  CAS  Google Scholar 

  33. Hermansen F, Rosen SD, Fath-Ordoubadi F, et al. Measurement of myocardial blood flow with oxygen-15 labelled water: comparison of different administration protocols. Eur J Nucl Med. 1998; 25: 751–759.

    Article  PubMed  CAS  Google Scholar 

  34. Araujo L, Lammertsma A, Rhodes C, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991; 83: 875–885.

    Article  PubMed  CAS  Google Scholar 

  35. Iida H, Rhodes C, de Silva R, et al. Myocardial tissue fraction-correction for partial volume effects and measure of tissue viability. JNod Med. 1991; 32: 2169–2175.

    CAS  Google Scholar 

  36. Iida H, Tamura Y, Kitamura K, Bloomfield PM, Eberl S, Ono Y. Histochemical correlates of (15)O-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med. 2000; 41: 1737–1745.

    PubMed  CAS  Google Scholar 

  37. de Silva R, Yamamoto Y, Rhodes CG, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation. 1992; 86: 1738–1742.

    Article  PubMed  Google Scholar 

  38. Yamamoto Y, De Silva R, Rhodes C, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 150-water and dynamic positron emission tomography. Circulation. 1992; 86: 167–178.

    Article  PubMed  CAS  Google Scholar 

  39. Phelps ME, Hoffman EJ, Raybaud C. Factors which affect cerebral uptake and retention of 13NH3. Stroke. 1977; 8: 694–702.

    Article  PubMed  CAS  Google Scholar 

  40. Post RL, Jolly PC. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957; 25: 118–128.

    Article  PubMed  CAS  Google Scholar 

  41. Schelbert HR, Phelps ME, Huang SC, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981; 63: 1259–1272.

    Article  PubMed  CAS  Google Scholar 

  42. Bergmann SR, Hack S, Tewson T, Welch MJ, Sobel BE. The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation. 1980; 61: 34–43.

    Article  PubMed  CAS  Google Scholar 

  43. Krivokapich J, Keen RE, Phelps ME, Shine KI, Barrio JR. Effects of anoxia on kinetics of [13N] glutamate and 13NH3 metabolism in rabbit myocardium. Circulat Res. 1987; 60: 505–516.

    Article  PubMed  CAS  Google Scholar 

  44. Krivokapich J, Smith GT, Huang SC, et al. 13N ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography [see comments]. Circulation. 1989; 80: 1328–1337.

    Article  PubMed  CAS  Google Scholar 

  45. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990; 15: 1032–1042.

    Article  PubMed  CAS  Google Scholar 

  46. Bellina CR, Parodi O, Camici P, et al. Simultaneous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med. 1990; 31: 1335–1343.

    PubMed  CAS  Google Scholar 

  47. Bol A, Melin JA, Vanoverschelde JL, et al. Direct comparison of [13N]ammonia and [150]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation. 1993; 87: 512–525.

    Article  PubMed  CAS  Google Scholar 

  48. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med. 1993; 34: 83–91.

    PubMed  CAS  Google Scholar 

  49. Choi Y, Huang SC, Hawkins RA, et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med. 1999; 40: 1045–1055.

    PubMed  CAS  Google Scholar 

  50. Czernin J, Müller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993; 88: 62–69.

    Article  PubMed  CAS  Google Scholar 

  51. Wilson R, Laughlin D, Ackell P. Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation. 1985; 72: 82–89.

    Article  PubMed  CAS  Google Scholar 

  52. Kotzerke J, Glatting G, van den Hoff J, et al. Validation of myocardial blood flow estimation with nitrogen-13 ammonia PET by the argon inert gas technique in humans. Eur J Nucl Med. 2001; 28: 340–345.

    Article  PubMed  CAS  Google Scholar 

  53. Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang SC, Schelbert HR. Noninvasive quantification of myocardial blood flow in humans. A direct comparison of the [13N]ammonia and the [150] water techniques. Circulation. 1996; 93: 2000–2006.

    Article  PubMed  CAS  Google Scholar 

  54. Huang SC, Williams BA, Krivokapich J, Araujo L, Phelps ME, Schelbert HR. Rabbit myocardial 82Rb kinetics and a compartmental model for blood flow estimation. Am J Physiol. 1989; 256: H1156 - H1164.

    PubMed  CAS  Google Scholar 

  55. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien HA Jr. Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions. J Nucl Med. 1983; 24: 907–915.

    PubMed  CAS  Google Scholar 

  56. Mullani NA, Goldstein RA, Gould KL, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med. 1983; 24: 898–906.

    PubMed  CAS  Google Scholar 

  57. Mullani NA. Myocardial perfusion with rubidium-82: III. Theory relating severity of coronary stenosis to perfusion deficit. J Nucl Med. 1984; 25: 1190–1196.

    PubMed  CAS  Google Scholar 

  58. Budinger TF, Yano Y, Moyer B, Twitchell J, Huesman RH. Myocardial extraction of Rb-82 vs. flow determined by positron emission tomography. J Nucl Med. 1983; 68: III - 81.

    Google Scholar 

  59. Glatting G, Bergmann K, Stollfub J, et al. Myocardial Rb extraction fraction: Determination in humans. J Am Coll Cardiol. 1995; 25: 364A.

    Google Scholar 

  60. Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest. 1985; 75: 1131–1137.

    Article  Google Scholar 

  61. Goldstein RA. Rubidium-82 kinetics after coronary occlusion: Temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med. 1986; 27: 1456–1461.

    PubMed  CAS  Google Scholar 

  62. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation. 1990; 82: 1377–1386.

    Article  PubMed  CAS  Google Scholar 

  63. Lin JW, Laine AF, Akinboboye O, Bergmann SR. Use of wavelet transforms in analysis of time-activity data from cardiac PET. J Nucl Med. 2001; 42: 194–200.

    PubMed  CAS  Google Scholar 

  64. Lin JW, Sciacca RR, Chou RL, Laine AF, Bergmann SR. Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. J Nucl Med. 2001; 42: 201–208.

    PubMed  CAS  Google Scholar 

  65. Green MA, Mathias CJ, Welch MJ, et al. Copper-62-labeled pyruvaldehyde bis(N4methylthiosemicarbazonato)copper(II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med. 1990; 31: 1989–1996.

    PubMed  CAS  Google Scholar 

  66. Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Kinetics of copper-PTSM in isolated hearts: a novel tracer for measuring blood flow with positron emission tomography. J Nucl Med. 1989; 30: 1843–1847.

    PubMed  CAS  Google Scholar 

  67. Marshall R, Leidholdt EJ, Zhang D, Barnett C. Technetium-99m hexakis 2-methoxy-2isobutyl isonitrile and thallium-201 extraction, washout, and retention at varying coronary flow rates in rabbit heart. Circulation. 1990; 82: 998–1007.

    Article  PubMed  CAS  Google Scholar 

  68. Beanlands RS, Muzik O, Mintun M, et al. The kinetics of copper-62-PTSM in the normal human heart. J Nucl Med. 1992; 33: 684–690.

    PubMed  CAS  Google Scholar 

  69. Wallhaus TR, Lacy J, Stewart R, et al. Copper-62-pyruvaldehyde bis(N-methyl-thiosemicarbazone) PET imaging in the detection of coronary artery disease in humans. J Nucl Cardiol. 2001; 8: 67–74.

    Article  PubMed  CAS  Google Scholar 

  70. Herrero P, Markham J, Weinheimer CJ, et al. Quantification of regional myocardial perfusion with generator-produced 62Cu-PTSM and positron emission tomography. Circulation. 1993; 87: 173–183.

    Article  PubMed  CAS  Google Scholar 

  71. Mélon P, Brihaye C, Degueldre C, et al. Myocardial kinetics of potassium-38 in humans and comparison with Copper-62-PTSM. J Nucl Med. 1994; 35: 1116–1122.

    PubMed  Google Scholar 

  72. Poe ND. Comparative myocardial uptake and clearance characteristics of potassium and cesium. J Nucl Med. 1972; 13: 557–560.

    PubMed  CAS  Google Scholar 

  73. Chan SY, Brunken RC, Phelps ME, Schelbert HR. Use of the metabolic tracer carbon11-acetate for evaluation of regional myocardial perfusion. JNucl Med. 1991; 32: 665–672.

    CAS  Google Scholar 

  74. Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Assessment of myocardial viability by use of 11C-acetate and positron emission tomography. Threshold criteria of reversible dysfunction. Circulation. 1997; 95: 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  75. Sun KT, Yeatman LA, Buxton DB, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med. 1998; 39: 272–280.

    PubMed  CAS  Google Scholar 

  76. Sciacca RR, Akinboboye O, Chou RL, Epstein S, Bergmann SR. Measurement of myocardial blood flow with PET using 1–11C-acetate. J Nucl Med. 2001; 42: 63–70.

    PubMed  CAS  Google Scholar 

  77. Nickles R, Nunn A, Stone C, Christian B. Technetium-94m-teboroxime: synthesis, dosimetry and initial PET imaging studies. J Nucl Med. 1993; 34: 1058–1066.

    PubMed  CAS  Google Scholar 

  78. Stone C, Christian B, Nickles R, Perlman S. Technetium 94m-labeled methoxyisobutyl isonitrile: Dosimetry and resting cardiac imaging with positron emission tomography. J Nucl Cardiol. 1994; 1: 425–433.

    Article  PubMed  CAS  Google Scholar 

  79. Nagamachi S, Czernin J, Kim AS, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med. 1996; 37: 1626–1631.

    PubMed  CAS  Google Scholar 

  80. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 150-labeled water and PET. J Nucl Med. 1999; 40: 1848–1856.

    PubMed  CAS  Google Scholar 

  81. Iida H, Yokoyama I, Agostini D, et al. Quantitative assessment of regional myocardial blood flow using oxygen-15-labelled water and positron emission tomography: a multicentre evaluation in Japan. Eur J Nucl Med. 2000; 27: 192–201.

    Article  PubMed  CAS  Google Scholar 

  82. Marcus M, Kerber R, Erhardt J, Falsetti H, Davis D, Abboud F. Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J. 1977; 94: 748–754.

    Article  PubMed  CAS  Google Scholar 

  83. King R, Bassingthwaighte J, Hales J, Rowell L. Stability of heterogeneity of myocardial blood flow in normal awake baboons. 1985; 57: 285–295.

    CAS  Google Scholar 

  84. Gould KL, Goldstein RA, Mullani NA, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol. 1986; 7: 775–789.

    Article  CAS  Google Scholar 

  85. Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation. 1989; 79: 825–835.

    Article  PubMed  CAS  Google Scholar 

  86. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, Gomes A, Kuhl DE. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol. 1982; 49: 1197–1207.

    Article  PubMed  CAS  Google Scholar 

  87. Yonekura Y, Tamaki N, Senda M, Nohara R, Kambara H, Konishi Y, Koide H, Kureshi SA, Saji H, Ban T, et al. Detection of coronary artery disease with 13N-ammonia and high-resolution positron-emission computed tomography. Am Heart J. 1987; 113: 645–654.

    Article  PubMed  CAS  Google Scholar 

  88. Gerber BL, Melin JA, Bol A, et al. Nitrogen-13- and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nod Med. 1998; 39: 1655–1662.

    CAS  Google Scholar 

  89. Opie LH. Metabolism of the heart in health and disease. I. Am Heart J. 1968; 76: 685–698.

    Article  Google Scholar 

  90. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981; 23: 321–336.

    Article  PubMed  CAS  Google Scholar 

  91. Bing RJ. The metabolism of the heart. In: Harvey Society of NY ed. Harvey Lecture Series. New York: Academic Press; 1954: 27–70.

    Google Scholar 

  92. Keul J, Doll E, Steim H, Fleer U, Reindell H. Über den Stoffwechsel des menschlichen Herzens. III. Der oxidative Stoffwechsel des menschlichen Herzens unter verschiedened Arbeitsbedingungen II. Pflugers Archiv Gesamte Physiol Menschen Tiere. 1965; 282: 43–53.

    Article  CAS  Google Scholar 

  93. Keul J, Doll E, Steim H, Homburger H, Kern H, Reindell H. Uber den Stoffwechsel des menschlichen Herzens. I. Substratversorgung des gesunden Herzens in Ruhe, während and nach körperlicher Arbeit. Pflugers Archiv Gesamte Physiol Menschen Tiere. 1965; 282: 1–27.

    Article  CAS  Google Scholar 

  94. Randle RJ, Garland BP, Hales CN, Newsholme EA. The glucose fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances in diabetes mellitus. Lancet. 1963; 1: 785–789.

    Article  PubMed  CAS  Google Scholar 

  95. Holmberg S, Serzysko W, Varnauskas E. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand. 1971; 190: 465–480.

    Article  PubMed  CAS  Google Scholar 

  96. Wisneski JA, Gertz EW, Neese RA, Gruenke LD, Morris DL, Craig JC. Metabolic fate of extracted glucose in normal human myocardium. J Clin Invest. 1985; 76: 1819–1827.

    Article  PubMed  CAS  Google Scholar 

  97. Yamamoto Y, de Silva R, Rhodes CG, et al. Noninvasive quantification of regional myocardial metabolic rate of oxygen by 1502 inhalation and positron emission tomography. Experimental validation. Circulation. 1996; 94: 808–816.

    Article  PubMed  CAS  Google Scholar 

  98. Iida H, Rhodes CG, Araujo LI, et al. Noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 1502 inhalation and positron emission tomography. Theory, error analysis, and application in humans. Circulation. 1996; 94: 792–807.

    Article  PubMed  CAS  Google Scholar 

  99. Laine H, Katoh C, Luotolahti M, et al. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999; 100: 2425–2430.

    Article  PubMed  CAS  Google Scholar 

  100. Takala TO, Nuutila P, Katoh C, et al. Myocardial blood flow, oxygen consumption, and fatty acid uptake in endurance athletes during insulin stimulation. Am J Physiol. 1999; 277: E585 - E590.

    PubMed  CAS  Google Scholar 

  101. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation. 1987; 76: 687–696.

    Article  PubMed  CAS  Google Scholar 

  102. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol. 1988; 12: 1054–1063.

    Article  PubMed  CAS  Google Scholar 

  103. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circulat Res. 1988; 63: 628–634.

    Article  PubMed  CAS  Google Scholar 

  104. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med. 1989; 30: 187–193.

    PubMed  CAS  Google Scholar 

  105. Buxton DB, Nienaber CA, Luxen A, et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C]acetate and dynamic positron emission tomography. Circulation. 1989; 79: 134–142.

    Article  PubMed  CAS  Google Scholar 

  106. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1–11C1 acetateas a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation. 1990; 81: 1594–1605.

    Article  PubMed  CAS  Google Scholar 

  107. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1–11C]acetate and dynamic positron tomography. Circulation. 1989; 80: 863–872.

    Article  PubMed  CAS  Google Scholar 

  108. Henes CG, Bergmann SR, Walsh MN, Sobel BE, Geltman EM. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med. 1989; 30: 1489–1499.

    PubMed  CAS  Google Scholar 

  109. Ng CK, Huang SC, Schelbert HR, Buxton DB. Validation of a model for [1–11C]acetate as a tracer of cardiac oxidative metabolism. Am J Physiol. 1994; 266: H1304 - H1315.

    PubMed  CAS  Google Scholar 

  110. Sun KT, Chen K, Huang SC, et al. Compartment model for measuring myocardial oxygen consumption using [1–11C]acetate. J Nucl Med. 1997; 38: 459–466.

    PubMed  CAS  Google Scholar 

  111. Ukkonen H, Knuuti J, Katoh C, et al. Use of [11C1 acetate and [150]02 PET for the assessment of myocardial oxygen utilization in patients with chronic myocardial infarction. Eur J Nucl Med. 2001; 28: 334–339.

    Article  PubMed  CAS  Google Scholar 

  112. Schön HR, Schelbert HR, Najafi A, et al. C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. II. Kinetics of C-11 palmitic acid in acutely ischemic myocardium. Am Heart J. 1982; 103: 548–561.

    Article  PubMed  Google Scholar 

  113. Fox KA, Abendschein DR, Ambos HD, Sobel BE, Bergmann SR. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circulat Res. 1985; 57: 232–243.

    Article  PubMed  CAS  Google Scholar 

  114. Rosamond TL, Abendschein DR, Sobel BE, Bergmann SR, Fox KA. Metabolic fate of radiolabeled palmitate in ischemic canine myocardium: implications for positron emission tomography. J Nucl Med. 1987; 28: 1322–1329.

    PubMed  CAS  Google Scholar 

  115. Wyns W, Schwaiger M, Huang SC, et al. Effects of inhibition of fatty acid oxidation on myocardial kinetics of 11C-labeled palmitate. Circulat Res. 1989; 65: 1787–1797.

    Article  PubMed  CAS  Google Scholar 

  116. Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med. 1996; 37: 1723–1730.

    PubMed  CAS  Google Scholar 

  117. Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002; 40: 271–277.

    Article  PubMed  CAS  Google Scholar 

  118. Stone CK, Pooley RA, DeGrado TR, et al. Myocardial uptake of the fatty acid analog 14fluorine-18-fluoro-6-thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate. J Nucl Med. 1998; 39: 1690–1696.

    PubMed  CAS  Google Scholar 

  119. DeGrado TR, Wang S, Holden JE, Nickles RJ, Taylor M, Stone CK. Synthesis and preliminary evaluation of (18)F-labeled 4-thia palmitate as a PET tracer of myocardial fatty acid oxidation. Nucl Med Biol. 2000; 27: 221–231.

    Article  PubMed  CAS  Google Scholar 

  120. Renstrom B, Rommelfanger S, Stone CK, et al. Comparison of fatty acid tracers FTHA and BMIPP during myocardial ischemia and hypoxia. J Nucl Med. 1998; 39: 1684–1689.

    PubMed  CAS  Google Scholar 

  121. Mäki MT, Haaparanta M, Nuutila P, et al. Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18-fluoro-6-thia-heptadecanoic acid. J Nucl Med. 1998; 39: 1320–1327.

    PubMed  Google Scholar 

  122. Taylor M, Wallhaus TR, Degrado TR, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F] fluoro-6-thia-heptadecanoic acid. J Nucl Med. 2001; 42: 55–62.

    PubMed  CAS  Google Scholar 

  123. Hawkins RA, Mans AM, Davis DW, Vina JR, Hibbard LS. Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position. Am J Physiol. 1985; 248: C170 - C176.

    PubMed  CAS  Google Scholar 

  124. Stone-Elander S, Halldin C, Langstrom B, et al. Production method for [11C]-D-glucose labeled in carbon-1 for positron emission tomography of glucose metabolism. Acta Radiol Suppl. 1991; 376: 102–103.

    PubMed  CAS  Google Scholar 

  125. Dence CS, Powers WJ, Welch MJ. Improved synthesis of 1-[11C]D-glucose. Appl Radiat Isot. 1993; 44: 971–980.

    Article  PubMed  CAS  Google Scholar 

  126. Herrero P, Weinheimer CJ, Dence C, Oellerich WF, Gropler RJ. Quantification of myocardial glucose utilization by PET and 1-carbon-11-glucose. JNucl Cardiol. 2002; 9: 5–14.

    Article  Google Scholar 

  127. Phelps ME, Hoffman EJ, Selin C, et al. Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med. 1978; 19: 1311–1319.

    PubMed  CAS  Google Scholar 

  128. Krivokapich J, Huang SC, Selin CE, Phelps ME. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart. Am J Physiol. 1987; 252: H777 - H787.

    PubMed  CAS  Google Scholar 

  129. Sokoloff L, Reivich M, Kennedy C, et al. The [14C1-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  130. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med. 1982; 23: 577–586.

    PubMed  CAS  Google Scholar 

  131. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med. 1989; 30: 359–366.

    PubMed  CAS  Google Scholar 

  132. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1985; 5: 584–590.

    Article  PubMed  CAS  Google Scholar 

  133. Schneider CA, Nguyen VT, Taegtmeyer H. Feeding and fasting determine postischemic glucose utilization in isolated working rat hearts. Am J Physiol. 1991; 260: H542 - H548.

    PubMed  CAS  Google Scholar 

  134. Russell RR III, Nguyen VT, Mrus JM, Taegtmeyer H. Fasting and lactate unmask insulin responsiveness in the isolated working rat heart. Am J Physiol. 1992; 263: E556 - E561.

    PubMed  CAS  Google Scholar 

  135. Russell RR III, Cline GW, Guthrie PH, Goodwin GW, Shulman GI, Taegtmeyer H. Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation. J Clin Invest. 1997; 100: 2892–2899.

    Article  PubMed  CAS  Google Scholar 

  136. Doenst T, Taegtmeyer H. Complexities underlying the quantitative determination of myocardial glucose uptake with 2-deoxyglucose. J Molec Cell Cardiol. 1998; V30: 1595–1604.

    Article  CAS  Google Scholar 

  137. Botker HE, Goodwin GW, Holden JE, Doenst T, Gjedde A, Taegtmeyer H. Myocardial glucose uptake measured with fluorodeoxyglucose: A prospect method to account for variable lumped constants. J Nucl Med. 1999; 40: 1186–1196.

    PubMed  CAS  Google Scholar 

  138. Hariharan R, Bray M, Ganim R, Doenst T, Goodwin GW, Taegtmeyer H. Fundamental limitations of [F-18]2-deoxy-2-fluoro-D-glucose for assessing myocardial glucose uptake. Circulation. 1995; 91: 2435–2444.

    Article  PubMed  CAS  Google Scholar 

  139. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237: E214 - E223.

    PubMed  CAS  Google Scholar 

  140. Hicks R, von Dahl J, Lee K, Herman W, Kalff V, Schwaiger M. Insulin-glucose clamp for standardization of metabolic conditions during F-18 fluoro-deoxyglucose PET imaging. JAm Coll Cardiol. 1991; 17: 381A.

    Google Scholar 

  141. Meaki M, Luotolahti M, Nuutila P, et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation. 1996; 93: 1658–1666.

    Article  Google Scholar 

  142. Gerber BL, Ordoubadi FF, Wijns W, et al. Positron emission tomography using(18)Ffluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter Study on Use of (18)F-fluoro-deoxyglucose Positron Emission Tomography for the Detection of Myocardial Viability. Eur Heart J. 2001; 22: 1691–1701.

    Article  PubMed  CAS  Google Scholar 

  143. Bax JJ, Visser FC, Poldermans D, et al. Feasibility, safety and image quality of cardiac FDG studies during hyperinsulinaemic-euglycaemic clamping. Eur J Nucl Med. 2002; 29: 452–457.

    Article  CAS  Google Scholar 

  144. Nuutila P, Knuuti M, Raitakari M, et al. Effect of antilipolysis on heart and skeletal muscle glucose uptake in overnight fasted humans. Am J Physiol. 1994; 267: E941 - E946.

    PubMed  CAS  Google Scholar 

  145. Stone C, Holden J, Stanley W, Perlman S. Effect of nicotinic acid on exogenous myocardial glucose utilization. J Nucl Med. 1995; 36: 996–1002.

    PubMed  CAS  Google Scholar 

  146. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RSB. Myocardial glucose utilization and optimization of 18F-FDG PET imaging in patients with non-insulindependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med. 2001; 42: 1730–1736.

    PubMed  CAS  Google Scholar 

  147. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001; 50: 151–161.

    Article  PubMed  CAS  Google Scholar 

  148. Krivokapich J, Huang SC, Schelbert HR. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate. Am J Cardiol. 1993; 71: 1351–1356.

    Article  PubMed  CAS  Google Scholar 

  149. Senneff MJ, Geltman EM, Bergmann SR. Noninvasive delineation of the effects of moderate aging on myocardial perfusion [published erratum appears in J Nucl Med 1992; 33(2):201] [see comments]. J Nucl Med. 1991; 32: 2037–2042.

    PubMed  CAS  Google Scholar 

  150. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med. 1995; 36: 2032–2036.

    PubMed  CAS  Google Scholar 

  151. Kalliokoski KK, Nuutila P, Laine H, et al. Myocardial perfusion and perfusion reserve in endurance-trained men. Med Sci Sports Exerc. 2002; 34: 948–953.

    Article  PubMed  Google Scholar 

  152. Radvan J, Choudhury L, Sheridan DJ, Camici PG. Comparison of coronary vasodilator reserve in elite rowing athletes versus hypertrophic cardiomyopathy. Am J Cardiol. 1997; 80: 1621–1623.

    Article  PubMed  CAS  Google Scholar 

  153. Brown BG, Josephson MA, Peterson RB, et al. Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol. 1981; 48: 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  154. Czernin J, Auerbach M, Sun KT, Phelps M, Schelbert HR. Effects of modified pharmacologic stress approaches on hyperemic myocardial blood flow. J Nucl Med. 1995; 36: 575–580.

    PubMed  CAS  Google Scholar 

  155. Chan SY, Brunken RC, Czernin J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol. 1992; 20: 979–985.

    Article  CAS  Google Scholar 

  156. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schäfers KP, Löscher TF, Camici PG. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation. 2000; 102: 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  157. Huggins GS, Pasternak RC, Alpert NM, Fischman AJ, Gewirtz H. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reserve. Circulation. 1998; 98: 1291–1296.

    Article  PubMed  CAS  Google Scholar 

  158. Iwado Y, Yoshinaga K, Furayama H, et al. Decreased endothelium-dependent coronary vosmotion in healthy young smokers. Eur J Nucl Med. 2002; 29: 984–990.

    Article  CAS  Google Scholar 

  159. Tadamura E, Iida H, Matsumoto K, et al. Comparison of myocardial blood flow during dobutamine-atropine infusion with that after dipyridamole administration in normal men. JAm Coll Cardiol. 2001; 37: 130–136.

    Article  CAS  Google Scholar 

  160. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation. 1988; 77: 43–52.

    Article  PubMed  CAS  Google Scholar 

  161. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium [see comments]. J Am Coll Cardiol 1989; 14: 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  162. Zeiher AM, Drexler H. Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. Basic Res Cardiol. 1991; 86: 203–213.

    PubMed  Google Scholar 

  163. Zeiher AM, Schachlinger V, Hohnloser SH, Saurbier B, Just H. Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis. Circulation. 1994; 89: 2525–2532.

    Article  PubMed  CAS  Google Scholar 

  164. Zeiher AM, Drexler H, Wollschlager H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation. 1991; 84: 1984–1992.

    Article  PubMed  CAS  Google Scholar 

  165. Campisi R, Czernin J, Schöder H, et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation. 1998; 98: 119–125.

    Article  PubMed  CAS  Google Scholar 

  166. Campisi R, Czernin J, Schöder H, Sayre JW, Schelbert HR. L-Arginine normalizes coronary vasomotion in long-term smokers. Circulation. 1999; 99: 491–497.

    Article  PubMed  CAS  Google Scholar 

  167. Raitakari OT, Toikka J, Laine H, Viikari J, Knuuti J, Hartiala J. Reduced myocardial flow reserve does not impair exercise capacity in asymptomatic men. Am J Cardiol. 1999;84: 1253–1255, A8.

    Google Scholar 

  168. Smits P, Williams S, Lipson D, Banitt P, Rongen G, Creager M. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation. 1995; 92: 2135–2141.

    Article  PubMed  CAS  Google Scholar 

  169. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation. 2001; 104: 2305–2310.

    Article  PubMed  CAS  Google Scholar 

  170. Böttcher M, Czernin J, Sun KT, Phelps ME, Schelbert HR. Effect of caffeine on myocardial blood flow at rest and during pharmacological vasodilation. J Nucl Med. 1995; 36: 2016–2021.

    PubMed  Google Scholar 

  171. Müller P, Czernin J, Choi Y, et al. Effect of exercise supplementation during adenosine infusion on hyperemic blood flow and flow reserve. Am Heart J. 1994; 128: 52–60.

    Article  PubMed  Google Scholar 

  172. Böttcher M, Czernin J, Sun K, Phelps ME, Schelbert HR. Effect of beta 1 adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity. J Nucl Med. 1997; 38: 442–446.

    PubMed  Google Scholar 

  173. Laine H, Nuutila P, Luotolahti M, Meyer C, Ronnemaa T, Knuuti J. Insulin-induced increment of coronary flow reserve is not abolished by dexamethasone in healthy young men. J Am Coll Cardiol. 2000; 35: 419A.

    Google Scholar 

  174. Sundell J, Nuutila P, Laine H, et al. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes. 2002; 51: 1125–1130.

    Article  PubMed  CAS  Google Scholar 

  175. Marcus M. Methods of calculating coronary vascular resistance. The Coronary Circulation in Health and Disease. New York: McGraw-Hill; 1983: 107–109.

    Google Scholar 

  176. Tamaki N, Magata Y, Takahashi N, et al. Oxidative metabolism in the myocardium in normal subjects during dobutamine infusion. Eur J Nucl Med. 1993; 20: 231–237.

    Article  PubMed  CAS  Google Scholar 

  177. Hicks R, Kalff V, Savas V, Starling M, Schwaiger M. Assessment of right ventricular oxidative metabolism by positron emission tomography with C-11 acetate in aortic valve disease. Am J Cardiol. 1991; 67: 753–757.

    Article  PubMed  CAS  Google Scholar 

  178. Schelbert HR, Henze E, Sochor H, et al. Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J. 1986; 111: 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  179. Grover-McKay M, Schelbert HR, Schwaiger M, et al. Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis. Circulation. 1986; 74: 281–292.

    Article  PubMed  CAS  Google Scholar 

  180. Gropler RJ, Siegel BA, Lee KJ, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans [see comments]. J Nucl Med. 1990; 31: 1749–1756.

    PubMed  CAS  Google Scholar 

  181. Choi Y, Brunken RC, Hawkins RA, et al. Factors affecting myocardial 2-[F-18]fluoro2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med. 1993; 20: 308–318.

    Article  PubMed  CAS  Google Scholar 

  182. Knuuti M, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during Positron Emission Tomography. J Nucl Med. 1992; 33: 1255–1262.

    PubMed  CAS  Google Scholar 

  183. Schelbert HR, Henze E, Keen R, et al. C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron-computed tomography. IV. In vivo evaluation of acute demand-induced ischemia in dogs. Am Heart J. 1983; 106: 736750.

    Google Scholar 

  184. Nuutila P, Koivisto VA, Knuuti J, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992; 89: 1767–1774.

    Article  PubMed  CAS  Google Scholar 

  185. Gould KL, Schelbert HR, Phelps ME, Hoffman EJ. Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed tomography in intact dogs. Am J Cardiol. 1979; 43: 200–208.

    Article  CAS  Google Scholar 

  186. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol. 1979; 43: 209–219.

    Article  PubMed  CAS  Google Scholar 

  187. Tamaki N, Yonekura Y, Senda M, et al. Myocardial positron computed tomography with 13N ammonia at rest and during exercise. Eur J Nucl Med. 1985; 11: 246–251.

    Article  PubMed  CAS  Google Scholar 

  188. Tamaki N, Yonekura Y, Senda M, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. I Nuel Med. 1988; 29: 1181–1188.

    CAS  Google Scholar 

  189. Go RT, Marwick TH, Maclntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease [see comments]. J Nucl Med. 1990; 31: 1899–1905.

    PubMed  CAS  Google Scholar 

  190. Stewart R, Schwaiger M, Molina E, et al. Comparison of rubidium-82 Positron Emission Tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1991; 67: 1303–1310.

    Article  CAS  Google Scholar 

  191. Simone G, Mullani N, Page D, Anderson B Sr. Utilization statistics and diagnostic accuracy of a nonhospital-based positron emission tomography center for the detection of coronary artery disease using rubidium-82. Am J Physiol Imag. 1992; 7: 203–209.

    CAS  Google Scholar 

  192. Williams B, Millani N, Jansen D, Anderson B. A retrospective study of the diagnostic accuracy of a community hospital-based PET center for the detection of coronary artery disease using rubidium-82. J Nucl Med. 1994; 35: 1586–1592.

    PubMed  CAS  Google Scholar 

  193. Zijlstra F, Fioretti P, Reiber JH, Serruys PW. Which cineangiographically assessed anatomic variable correlates best with functional measurements of stenosis severity? A comparison of quantitative analysis of the coronary cineangiogram with measured coronary flow reserve and exercise/redistribution thallium-201 scintigraphy. J Am Coll Cardiol. 1988; 12: 686–691.

    PubMed  CAS  Google Scholar 

  194. Flamm SD, Khanna S, Dicarli M, Phelps M, Schelbert HR, Maddahi J. Prognostic significance of normal adenosine stress myocardial perfusion PET study in patients presenting with chest pain. J Nod Med. 1994; 35: 60 P.

    Google Scholar 

  195. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol. 1997; 80: 865–870.

    Article  PubMed  CAS  Google Scholar 

  196. Marwick TH, Shan K, Go RT, Maclntyre WJ, Lauer MS. Use of positron emission tomography for prediction of perioperative and late cardiac events before vascular surgery. Am Heart J. 1995; 130: 1196–1202.

    Article  PubMed  CAS  Google Scholar 

  197. Sdringola S, Patel D, Gould KL. High prevalence of myocardial perfusion abnormalities on positron emission tomography in asymptomatic persons with a parent or sibling with coronary artery disease. Circulation. 2001; 103: 496–501.

    Article  PubMed  CAS  Google Scholar 

  198. Gould KL, Ornish D, Scherwitz L, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification [see comments]. JAMA. 1995; 274: 894–901.

    Article  PubMed  CAS  Google Scholar 

  199. Sambuceti G, Parodi O, Marcassa C, et al. Alteration in regulation of myocardial blood flow in one-vessel coronary artery disease determined by positron emission tomography. Am J Cardiol. 1993; 72: 538–543.

    Article  PubMed  CAS  Google Scholar 

  200. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995; 91: 1944–1951.

    Article  PubMed  Google Scholar 

  201. Guethlin M, Kasel AM, Coppenrath K, Ziegler S, Delius W, Schwaiger M. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation. 1999; 99: 475–481.

    Article  PubMed  CAS  Google Scholar 

  202. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994; 330: 1782–1788.

    Article  PubMed  CAS  Google Scholar 

  203. Beanlands RS, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. JAm Coll Cardiol. 1995; 26: 1465–1475.

    Article  CAS  Google Scholar 

  204. Muzik O, Duvernoy C, Beanlands RS, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. JAm Coll Cardiol. 1998; 31: 534–540.

    Article  CAS  Google Scholar 

  205. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974; 33: 87–94.

    Article  PubMed  CAS  Google Scholar 

  206. De Bruyne B, Baudhuin T, Melin J, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994; 89: 1013–1022.

    Article  PubMed  Google Scholar 

  207. Krivokapich J, Czernin J, Schelbert HR. Dobutamine positron emission tomography: absolute quantitation of rest and dobutamine myocardial blood flow and correlation with cardiac work and percent diameter stenosis in patients with and without coronary artery disease. JAm Coll Cardiol. 1996; 28: 565–572.

    Article  CAS  Google Scholar 

  208. Vanoverschelde JL, Wijns W, Depré C, et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium [see comments]. Circulation. 1993; 87: 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  209. Holmvang G, Fry S, Skopicki HA, et al. Relation between coronary “steal” and contractile function at rest in collateral-dependent myocardium of humans with ischemic heart disease. Circulation. 1999; 99: 2510–2516.

    Article  PubMed  CAS  Google Scholar 

  210. Akinboboye 00, Idris 0, Chou RL, Sciacca RR, Cannon PJ, Bergmann SR. Absolute quantitation of coronary steal induced by intravenous dipyridamole. J Am Coll Cardiol. 2001; 37: 109–116.

    Article  Google Scholar 

  211. Kosa I, Blasini R, Schneider-Eicke J, et al. Early recovery of coronary flow reserve after stent implantation as assessed by positron emission tomography. J Am Coll Cardiol. 1999; 34: 1036–1041.

    Article  PubMed  CAS  Google Scholar 

  212. Uren NG, Crake T, Lefroy DC, DeSilva R, Davies GJ, Maseri A. Delayed recovery of coronary resistive vessel function after coronary angioplasty. JAm Coll Cardiol. 1993; 21: 612–621.

    Article  CAS  Google Scholar 

  213. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms [see comments]. N Engl J Med. 1993; 328: 1659–1664.

    Article  PubMed  CAS  Google Scholar 

  214. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation. 1994; 90: 808–817.

    Article  PubMed  CAS  Google Scholar 

  215. Duvernoy CS, Meyer C, Seifert-Klauss V, et al. Gender differences in myocardial blood flow dynamics: lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999; 33: 463–470.

    Article  PubMed  CAS  Google Scholar 

  216. Pitkänen OP, Raitakari OT, Niinikoski H, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. JAm Coll Cardiol. 1996; 28: 1705–1711.

    Article  Google Scholar 

  217. Yokoyama I, Murakami T, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Ornata M. Reduced coronary flow reserve in familial hypercholesterolemia. J Nucl Med. 1996; 37: 1937–42.

    PubMed  CAS  Google Scholar 

  218. Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Ornata M. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation. 1996; 94: 3232–3238.

    Article  PubMed  CAS  Google Scholar 

  219. Yokoyama I, Ohtake T, Momomura S, et al. Impaired myocardial vasodilation during hyperemic stress with dipyridamole in hypertriglyceridemia. JAm Coll Cardiol. 1998; 31: 1568–1574.

    Article  CAS  Google Scholar 

  220. Pitkänen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation. 1999; 99: 1678–1684.

    Article  PubMed  Google Scholar 

  221. Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, Löscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. JAm Coll Cardiol. 2000; 36: 103–109.

    Article  CAS  Google Scholar 

  222. Yokoyama I, Ohtake T, Momomura S, et al. Altered myocardial vasodilatation in patients with hypertriglyceridemia in anatomically normal coronary arteries. Arterioscler Thromb Vasc BioL 1998; 18: 294–299.

    Article  PubMed  CAS  Google Scholar 

  223. Pitkanen OP, Raitakari OT, Ronnemaa T, et al. Influence of cardiovascular risk status on coronary flow reserve in healthy young men. Am J Cardiol. 1997; 79: 1690–1692.

    Article  PubMed  CAS  Google Scholar 

  224. Laine H, Raitakari OT, Niinikoski H, et al. Early impairment of coronary flow reserve in young men with borderline hypertension. JAm Coll Cardiol. 1998; 32: 147–153.

    Article  CAS  Google Scholar 

  225. Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in noninsulin-dependent diabetes mellitus [see comments]. J Am Coll Cardiol. 1997; 30: 1472 1477.

    Google Scholar 

  226. Pitkänen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes. 1998; 47: 248–254.

    Article  PubMed  Google Scholar 

  227. Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes. 1998; 47: 119–124.

    Article  PubMed  CAS  Google Scholar 

  228. Yokoyama I, Yonekura K, Ohtake T, et al. Coronary microangiopathy in type 2 diabetic patients: relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med. 2000; 41: 978–985.

    PubMed  CAS  Google Scholar 

  229. Bache RJ. Vasodilator reserve: a functional assessment of coronary health [editorial; comment]. Circulation. 1998; 98: 1257–1260.

    Article  PubMed  CAS  Google Scholar 

  230. Schwaiger M, Kalif V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography [see comments]. Circulation. 1990; 82: 457–464.

    Article  PubMed  CAS  Google Scholar 

  231. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997; 336: 1208–1215.

    Article  PubMed  Google Scholar 

  232. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999; 100: 813–819.

    Article  PubMed  Google Scholar 

  233. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation. 1998; 98: 961–968.

    Article  PubMed  CAS  Google Scholar 

  234. Schöder H, Silverman DH, Campisi R, et al. Regulation of myocardial blood flow response to mental stress in healthy individuals. Am J Physiol Heart Circ Physiol. 2000; 278: H360 - H366.

    PubMed  Google Scholar 

  235. Schöder H, Silverman DH, Campisi R, et al. Effect of mental stress on myocardial blood flow and vasomotion in patients with coronary artery disease. JNucl Med. 2000; 41: 11–16.

    Google Scholar 

  236. Bottcher M, Madsen MM, Refsgaard J, et al. Peripheral flow response to transient arterial forearm occlusion does not reflect myocardial perfusion reserve. Circulation. 2001; 103: 1109–1114.

    Article  PubMed  CAS  Google Scholar 

  237. Gould KL, Nakagawa Y, Nakagawa K, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation. 2000; 101: 1931–1939.

    Article  PubMed  CAS  Google Scholar 

  238. Hernandez-Pampaloni M, Keng FYY, Kudo T, Sayre JS, Schelbert HR. Abnormal longitudinal base to apex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation. 2001; 104: 527–532.

    Article  PubMed  CAS  Google Scholar 

  239. De Bruyne B, Hersbach F, Pijls NH, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “Normal” coronary angiography. Circulation. 2001; 104: 2401–2406.

    Article  PubMed  Google Scholar 

  240. Smart FW, Ballantyne CM, Cocanougher B, et al. Insensitivity of noninvasive tests to detect coronary artery vasculopathy after heart transplant. Am J Cardiol. 1991; 67: 243247.

    Google Scholar 

  241. Hosenpud JD. Noninvasive diagnosis of cardiac allograft rejection. Another of many searches for the grail [editorial; comment]. Circulation. 1992; 85: 368–371.

    Article  PubMed  CAS  Google Scholar 

  242. Chan SY, Kobashigawa J, Stevenson LW, Brownfield E, Brunken RC, Schelbert HR. Myocardial blood flow at rest and during pharmacological vasodilation in cardiac transplants during and after successful treatment of rejection. Circulation. 1994; 90: 204–212.

    Article  PubMed  CAS  Google Scholar 

  243. Senneff MJ, Hartman J, Sobel BE, Geltman EM, Bergmann SR. Persistence of coronary vasodilator responsivity after cardiac transplantation. Am J Cardiol. 1993; 71: 333–338.

    Article  PubMed  CAS  Google Scholar 

  244. Kofoed KF, Czernin J, Johnson J, et al. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation. 1997; 95: 600–606.

    Article  PubMed  CAS  Google Scholar 

  245. Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation. 1995; 92: 197204.

    Google Scholar 

  246. Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease [see comments]. N Engl J Med. 2000; 342: 454–460.

    Article  PubMed  CAS  Google Scholar 

  247. Smith SC, Jr. Risk-reduction therapy: the challenge to change. Presented at the 68th Scientific Sessions of the American Heart Association, November 13, 1995, Anaheim, California. Circulation. 1996; 93: 2205–2211.

    Article  PubMed  Google Scholar 

  248. Janatuinen T, Laaksonen R, Vesalainen R, et al. Effect of lipid-lowering therapy with pravastatin on myocardial blood flow in young mildly hypercholesterolemic adults. J Cardiovasc Pharmacol. 2001; 38: 561–568.

    Article  PubMed  CAS  Google Scholar 

  249. Yokoyama I, Yonekura K, Inoue Y, Ohtomo K, Nagai R. Long-term effect of simvastatin on the improvement of impaired myocardial flow reserve in patients with familial hypercholesterolemia without gender variance. J Nucl Cardiol. 2001; 8: 445–451.

    Article  PubMed  CAS  Google Scholar 

  250. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation. 1999; 99: 2871–2875.

    Article  PubMed  CAS  Google Scholar 

  251. Mellwig KP, Baller D, Gleichmann U, et al. Improvement of coronary vasodilatation capacity through single LDL apheresis. Atherosclerosis. 1998; 139: 173–178.

    Article  PubMed  CAS  Google Scholar 

  252. John S, Schlaich M, Langenfeld M, et al. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation. 1998; 98: 211–216.

    Article  PubMed  CAS  Google Scholar 

  253. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998; 97: 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  254. Kaesemeyer WH, Caldwell RB, Huang J, Caldwell RW. Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. JAm Coll Cardiol. 1999; 33: 234–241.

    Article  CAS  Google Scholar 

  255. Nickenig G, Baumer AT, Temur Y, Kebben D, Jockenhovel F, Bohm M. Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation. 1999; 100: 2131–2134.

    Article  PubMed  CAS  Google Scholar 

  256. Yokoyama I, Momomura S, Ohtake T, et al. Improvement of impaired myocardial vasodilatation due to diffuse coronary atherosclerosis in hypercholesterolemics after lipid-lowering therapy. Circulation. 1999; 100: 117–122.

    Article  PubMed  CAS  Google Scholar 

  257. Kurz S, Harrison DG. Insulin and the arginine paradox [editorial]. J Clin Invest. 1997; 99: 369–370.

    Article  PubMed  CAS  Google Scholar 

  258. Boger RH, Bode-Boger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998; 98: 1842–1847.

    Article  PubMed  CAS  Google Scholar 

  259. Boger RH, Bode-Boger SM, Sydow K, Heistad DD, Lentz SR. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000; 20: 1557–1564.

    Article  PubMed  CAS  Google Scholar 

  260. Pampaloni MH, Hsueh WA, Quinones M, Sayre JS, Schelbert HR. PET determined myocardial blood flow demonstrates abnormal coronary vasomotion in insulin resistance without diabetes. J Nucl Med. 2000; 41: 44 P.

    Google Scholar 

  261. Hsueh WA, Law RE. Insulin signaling in the arterial wall. Am J Cardiol. 1999; 84: 21J - 24J.

    Article  PubMed  CAS  Google Scholar 

  262. Duvernoy CS, Rattenhuber J, Seifert-Klauss V, Bengel F, Meyer C, Schwaiger M. Myocardial blood flow and flow reserve in response to short-term cyclical hormone replacement therapy in postmenopausal women. J Gend Specif Med. 2001; 4: 21–27.

    PubMed  CAS  Google Scholar 

  263. Peterson LR, Eyster D, Davila-Roman VG, et al. Short-term oral estrogen replacement therapy does not augment endothelium-independent myocardial perfusion in postmenopausal women. Am Heart J. 2001; 142: 641–647.

    Article  PubMed  CAS  Google Scholar 

  264. Campisi R, Nathan L, Pampaloni MH, Schoder H, Sayre JW, Chaudhuri G, Schelbert HR. Noninvasive assessment of coronary microcirculatory function in postmenopausal women and effects of short-term and long-term estrogen administration. Circulation. 2002; 105: 425–430.

    Article  PubMed  CAS  Google Scholar 

  265. Vita JA, Yeung AC, Winniford M, et al. Effect of cholesterol-lowering therapy on coronary endothelial vasomotor function in patients with coronary artery disease. Circulation. 2000; 102: 846–851.

    Article  PubMed  CAS  Google Scholar 

  266. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000; 101: 1899–906.

    Article  PubMed  CAS  Google Scholar 

  267. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Longterm follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000; 101: 948–954.

    Article  PubMed  CAS  Google Scholar 

  268. Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J. 1997; 18: 108–116.

    Article  PubMed  CAS  Google Scholar 

  269. Camici P, Chiriatti G, Lorenzoni R, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1991; 17: 879–886.

    Article  PubMed  CAS  Google Scholar 

  270. Choudhury L, Elliott P, Rimoldi O, et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Bas Res Cardiol. 1999; 94: 49–59.

    Article  CAS  Google Scholar 

  271. Perrone-Filardi P, Bacharach SL, Dilsizian V, Panza JA, Maurea S, Bonow RO. Regional systolic function, myocardial blood flow and glucose uptake at rest in hypertrophie cardiomyopathy. Am J Cardiol. 1993; 72: 199–204.

    Article  PubMed  CAS  Google Scholar 

  272. Tadamura E, Yoshibayashi M, Yonemura T, et al. Significant regional heterogeneity of coronary flow reserve in paediatric hypertrophic cardiomyopathy. Eur J Nucl Med. 2000; 27: 1340–1348.

    Article  PubMed  CAS  Google Scholar 

  273. Drzezga A, Blasini R, Ziegler S, et al. Quantitative flow measurement using N-13 ammonia positron emission tomography during rest and stress by cold pressor test in normal subjects and patients with dilated cardiomyopathy. J Nucl Med. 1995; 36: 3 P.

    Google Scholar 

  274. Weismueller S, Czernin J, Sun KT, Fung C, Phelps ME, Schelbert HR. Reduced coronary vasodilator capacity in idiopathic dilated cardiomyopathy. J Nucl Med. 1996; 37: 82P - 83 P.

    Google Scholar 

  275. van den Heuvel AF, van Veldhuisen DJ, van der Wall EE, et al. Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2000; 35: 19–28.

    Article  PubMed  Google Scholar 

  276. Neglia D, Michelassi C, Trivieri MG, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002; 105: 186–193.

    Article  PubMed  Google Scholar 

  277. Drzezga AE, Blasini R, Ziegler SI, Bengel FM, Picker W, Schwaiger M. Coronary microvascular reactivity to sympathetic stimulation in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2000; 41: 837–844.

    PubMed  CAS  Google Scholar 

  278. Bengel FM, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon-11 acetate-comparison between the normal and failing human heart. Eur J Nucl Med. 2000; 27: 319–326.

    Article  PubMed  CAS  Google Scholar 

  279. Wolpers HG, Buck A, Nguyen N, et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. JNucl Cardiol. 1994; 1: 262–269.

    Article  CAS  Google Scholar 

  280. Beanlands RS, Nahmias C, Gordon E, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: A double-blind, placebo-controlled, positron-emission tomography study. Circulation. 2000; 102: 2070–2075.

    Article  PubMed  CAS  Google Scholar 

  281. Geltman EM, Smith JL, Beecher D, Ludbrook PA, Ter-Pogossian MM, Sobel BE. Altered regional myocardial metabolism in congestive cardiomyopathy detected by positron tomography. Am J Med. 1983; 74: 773–785.

    Article  PubMed  CAS  Google Scholar 

  282. Eisenberg JD, Sobel BE, Geltman ED. Differentiation of ischemic from nonischemic cardiomyopathy with positron emission tomography. Am J Cardiol. 1987; 59: 1410–1414.

    Article  PubMed  CAS  Google Scholar 

  283. Sochor H, Schelbert H, Schwaiger M, Henze E, Phelps M. Studies of fatty acid metabolism with positron emission tomography in patients with cardiomyopathy. Eur J Nucl Med. 1986; 12: S66 - S69.

    Article  PubMed  Google Scholar 

  284. Vaghaiwalla Mody F, Brunken R, Warner-Stevenson L, Nienaber C, Phelps M, Schelbert H. Differentiating cardiomyopathy of coronary artery disease from non-ischemic dilated cardiomyopathy utilizing positron tomography. J Am Coll Cardiol. 1991; 17: 373–383.

    Article  Google Scholar 

  285. Opie LH, Owen P, Riemersma RA. Relative rates of oxidation of glucose and free fatty acids by ischemic and non-ischemic myocardium after coronary artery ligation in the dog. Eur J Clin Invest. 1973; 3: 419–435.

    Article  PubMed  CAS  Google Scholar 

  286. Schelbert HR, Phelps ME, Selin C, Marshall RC, Hoffman EJ, Kuhl DE. Regional myocardial ischemia assessed by 18Fluoro-2-deoxyglucose and positron emission computed tomography. In: Kreuzer H, Parmley WW, Rentrop P, Heiss HW, eds. Quantification of Myocardial Ischemia. New York: Gehard Witzstrock Publishing House; 1980: 437–447.

    Google Scholar 

  287. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, Schelbert HR. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983; 67: 766–78.

    Article  PubMed  CAS  Google Scholar 

  288. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986; 314: 884–888.

    Article  PubMed  CAS  Google Scholar 

  289. vom Dahl J, Altehoefer C, Sheehan F, et al. Recovery of regional left ventricular dysfunction after coronary revascularization: Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol. 1996; 28: 948–958.

    Article  Google Scholar 

  290. Maes A, Flameng W, Nuyts J, et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation. 1994; 90: 735–745.

    Article  PubMed  CAS  Google Scholar 

  291. Depré C, Vanoverschelde JL, Melin JA, et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol. 1995; 268: H1265 - H1275.

    PubMed  Google Scholar 

  292. Gewirtz H, Fischman A, Abraham S, Gilson M, Strauss H, Alpert N. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol. 1994; 23: 851–859.

    Article  PubMed  CAS  Google Scholar 

  293. Duvernoy CS, vom Dahl J, Laubenbacher C, Schwaiger M. The role of nitrogen 13 ammonia positron emission tomography in predicting functional outcome after coronary revascularization. J Nucl Cardiol. 1995; 2: 499–506.

    Article  PubMed  CAS  Google Scholar 

  294. Bax JJ, Poldermans D, Elhendy A, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol. 1999; 34: 163–169.

    Article  PubMed  CAS  Google Scholar 

  295. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose [see comments]. Circulation. 1991; 83: 26–37.

    Article  PubMed  CAS  Google Scholar 

  296. Knuuti M, Saraste M, Nuutila P, Härkönen R, Wegelius U, Haapanen A. Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J. 1994; 127: 785–796.

    Article  PubMed  CAS  Google Scholar 

  297. Baer FM, Voth E, Deutsch HJ, Schneider CA, Schicha H, Sechtem U. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. JAm Coll Cardiol. 1994; 24: 343–353.

    Article  CAS  Google Scholar 

  298. Buvat I, Bartlett M, Srinivasan G, et al. Can gated FDG PET assess LV function as well as gated bloodpool SPECT? J Nucl Med. 1996; 37: 39 P.

    Google Scholar 

  299. Buvat I, Kitsiou A, Srinivasan G, Dilsizian V, Bacharach S. Relationship between metabolism and function in CAD patients using gated FDG PET. JNucl Med. 1996; 37: 161 P.

    Google Scholar 

  300. Fath-Ordoubadi F, Beatt KJ, Spyrou N, Camici PG. Efficacy of coronary angioplasty for the treatment of hibernating myocardium. Heart. 1999; 82: 210–216.

    PubMed  CAS  Google Scholar 

  301. DePuey EG, Ghesani M, Schwartz M, Friedman M, Nichols K, Salensky H. Comparative performance of gated perfusion SPECT wall thickening, delayed thallium uptake, and F-18 fluorodeoxyglucose SPECT in detecting myocardial viability. J Nucl Cardiol. 1999; 6: 418–428.

    Article  PubMed  CAS  Google Scholar 

  302. Schöder H, Campisi R, Ohtake T, et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. JAm Coll Cardiol. 1999; 33: 1328–1337.

    Article  Google Scholar 

  303. Erler H, Zaknun J, Donnemiller E, et al. One year’s clinical experience of 18F-FDG PET with a modified SPECT camera using molecular coincidence detection. Nucl Med Co m m u n. 1999; 20: 1009–1015.

    CAS  Google Scholar 

  304. Fukuchi K, Sago M, Nitta K, et al. Attenuation correction for cardiac dual-head gamma camera coincidence imaging using segmented myocardial perfusion SPECT. JNucl Med. 2000; 41: 919–925.

    CAS  Google Scholar 

  305. Nowak B, Zimny M, Schwarz ER, et al. Diagnosis of myocardial viability by dual-head coincidence gamma camera fluorine-18 fluorodeoxyglucose positron emission tomography with and without non-uniform attenuation correction. Eur J Nucl Med. 2000; 27: 1501–1508.

    Article  PubMed  CAS  Google Scholar 

  306. Di Bella EV, Kadrmas DJ, Christian PE. Feasibility of dual-isotope coincidence/singlephoton imaging of the myocardium. J Nucl Med. 2001; 42: 944–950.

    PubMed  Google Scholar 

  307. Bax JJ, Cornel JH, Visser FC, et al. F18-fluorodeoxyglucose single-photon emission computed tomography predicts functional outcome of dyssynergic myocardium after surgical revascularization. J Nucl Cardiol. 1997; 4: 302–308.

    Article  PubMed  CAS  Google Scholar 

  308. Bax JJ, Visser FC, Elhendy A, et al. Prediction of improvement of regional left ventricular function after revascularization using different perfusion-metabolism criteria. J Nucl Med. 1999; 40: 1866–1873.

    PubMed  CAS  Google Scholar 

  309. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol. 1992; 20: 569–577.

    Article  PubMed  CAS  Google Scholar 

  310. Gropler RJ, Siegel BA, Sampathkumaran K, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. JAm Coll Cardiol. 1992; 19: 989–997.

    Article  CAS  Google Scholar 

  311. Rubin PJ, Lee DS, Davila-Roman VG, et al. Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction. Am J Cardiol. 1996; 78: 1230–1235.

    Article  PubMed  CAS  Google Scholar 

  312. Hata T, Nohara R, Fujita M, et al. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction. Usefulness of low-dose dobutamine infusion. Circulation. 1996; 94: 1834–1841.

    Article  PubMed  CAS  Google Scholar 

  313. Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Assessment of myocardial viability by use of 11C-acetate and positron emission tomography. Threshold criteria of reversible dysfunction. Circulation. 1997; 95: 1417–1424.

    Article  PubMed  CAS  Google Scholar 

  314. Camici P, Araujo LI, Spinks T, et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation. 1986; 74: 81–88.

    Article  PubMed  CAS  Google Scholar 

  315. Schwaiger M, Schelbert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol. 1985; 6: 336–347.

    Article  PubMed  CAS  Google Scholar 

  316. Gerber BL, Wijns W, Vanoverschelde JL, et al. Myocardial perfusion and oxygen consumption in reperfused noninfarcted dysfunctional myocardium after unstable angina: direct evidence for myocardial stunning in humans. JAm Coll Cardiol. 1999; 34: 1939–1946.

    Article  CAS  Google Scholar 

  317. Schwaiger M. Time course of metabolic findings in coronary occlusion and reperfusion and their role for assessing myocardial salvage. Eur J Nucl Med. 1986;12 Suppl: S54–S58.

    Google Scholar 

  318. Bolli R. Myocardial `stunning’ in man. Circulation. 1992; 86: 1671–1691.

    Article  PubMed  CAS  Google Scholar 

  319. Barnes E, Baker CS, Dutka DP, et al. Prolonged left ventricular dysfunction occurs in patients with coronary artery disease after both dobutamine and exercise induced myocardial ischaemia. Heart. 2000; 83: 283–289.

    Article  PubMed  CAS  Google Scholar 

  320. Barnes E, Dutka DP, Khan M, Camici PG, Hall RJ. Effect of repeated episodes of reversible myocardial ischemia on myocardial blood flow and function in humans. Am J Physiol Heart Circ Physiol. 2002; 282: H1603 - H1608.

    PubMed  CAS  Google Scholar 

  321. Barnes E, Hall RJ, Dutka DP, Camici PG. Absolute blood flow and oxygen consumption in stunned myocardium in patients with coronary artery disease. J Am Coll Cardiol. 2002; 39: 420–427.

    Article  PubMed  Google Scholar 

  322. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989; 117: 211–221.

    Article  PubMed  CAS  Google Scholar 

  323. Schulz R, Rose J, Martin C, Brodde O-E, Heusch G. Development of short-term myocardial hibernation-Its limitation by the severity of ischemia and inotropic stimulation. Circulation. 1993; 88: 684–695.

    Article  PubMed  CAS  Google Scholar 

  324. Fallavollita J, Bryan P, Gantry J. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium: evidence for transmural variations in chronic hibernating myocardium. Circulation. 1997; 95: 1900–1909.

    Article  PubMed  CAS  Google Scholar 

  325. Fallavollita JA, Canty JM Jr. Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs. Circulation. 1999; 99: 2798–2805.

    Article  PubMed  CAS  Google Scholar 

  326. Lim H, Fallavollita JA, Hard R, Kerr CW, Canty JM Jr. Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation. 1999; 100: 2380–2386.

    Article  PubMed  CAS  Google Scholar 

  327. Shivalkar B, Flameng W, Szilard M, Pislaru S, Borgers M, Vanhaecke J. Repeated stunning precedes myocardial hibernation in progressive multiple coronary artery obstruction. J Am Coll Cardiol. 1999; V34: 2126–2136.

    Article  PubMed  CAS  Google Scholar 

  328. Schwaiger M, Brunken R, Grover-McKay M, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol. 1986; 8: 800–808.

    Article  PubMed  CAS  Google Scholar 

  329. Fragasso G, Chierchia S, Lucignani G, et al. Time dependence of residual tissue viability after myocardial infarction assessed by [18F] fluorodeoxyglucose and positron emission tomography. Am J Cardiol. 1993; 72: 131G - 139G.

    Article  PubMed  CAS  Google Scholar 

  330. Fedele FA, Gewortz J, Capone RJ, Sharaf B, Most AS. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation. 1988; 78: 729–735.

    Article  PubMed  CAS  Google Scholar 

  331. Camici PG, Wijns W, Borgers M, et al. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation. 1997; 96: 3205–3214.

    Article  PubMed  CAS  Google Scholar 

  332. Maes A, Flameng W, Borgers M, et al. Regional myocardial blood flow, glucose utilization and contractile function before and after revascularization and ultrastructural findings in patients with chronic coronary artery disease. Eur JNucl Med. 1995; 22: 1299–1305.

    Article  CAS  Google Scholar 

  333. Maes A, Mortelmans L, Nuyts J, et al. Importance of flow/metabolism studies in predicting late recovery of function following reperfusion in patients with acute myocardial infarction. Eur Heart J. 1997; 18: 954–962.

    Article  PubMed  CAS  Google Scholar 

  334. Czernin J, Porenta G, Rosenquist G, et al. Loss of coronary perfusion reserve in PET ischemia. Circulation. 1991; 84: I1–47.

    Article  Google Scholar 

  335. Pagano D, Bonser RS, Camici PG. Myocardial revascularization for the treatment of post-ischemic heart failure. Curr Opin Cardiol. 1999; 14: 506–509.

    Article  PubMed  CAS  Google Scholar 

  336. Pagano D, Fath-Ordoubadi F, Beatt KJ, Townend JN, Bonser RS, Camici PG. Effects of coronary revascularisation on myocardial blood flow and coronary vasodilator reserve in hibernating myocardium. Heart. 2001; 85: 208–212.

    Article  PubMed  CAS  Google Scholar 

  337. Sun KT, Czernin J, Krivokapich J, et al. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism, and wall motion in normal and dysfunctional myocardium [see comments]. Circulation. 1996; 94: 3146–3154.

    Article  PubMed  CAS  Google Scholar 

  338. Pasquet A, Robert A, D’Hondt AM, Dion R, Melin JA, Vanoverschelde JL. Prognostic value of myocardial ischemia and viability in patients with chronic left ventricular ischemic dysfunction. Circulation. 1999; 100: 141–148.

    Article  PubMed  CAS  Google Scholar 

  339. Pasquet A, Williams MJ, Secknus MA, Zuchowski C, Lytle BW, Marwick TH. Correlation of preoperative myocardial function, perfusion, and metabolism with postoperative function at rest and stress after bypass surgery in severe left ventricular dysfunction. Am J Cardiol. 1999; 84: 58–64.

    Article  PubMed  CAS  Google Scholar 

  340. Pasquet A, Lauer MS, Williams MJ, Secknus MA, Lytle B, Marwick TH. Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism [see comments]. Eur Heart J. 2000; 21: 125–136.

    Article  PubMed  CAS  Google Scholar 

  341. Pagano D, Bonser RS, Townend JN, Ordoubadi F, Lorenzoni R, Camici PG. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart. 1998; 79: 281–288.

    PubMed  CAS  Google Scholar 

  342. Nagueh SF, Mikati I, Weilbaecher D, et al. Relation of the contractile reserve of hibernating myocardium to myocardial struture in humans. Circulation. 1999; 100: 490–496.

    Article  PubMed  CAS  Google Scholar 

  343. Bax JJ, Poldermans D, Visser FC, et al. Delayed recovery of hibernating myocardium after surgical revascularization: implications for discrepancy between metabolic imaging and dobutamine echocardiography for assessment of myocardial viability. J Nucl Cardiol. 1999; 6: 685–687.

    Article  PubMed  CAS  Google Scholar 

  344. Schwarz ER, Schaper J, vom Dahl J, et al. Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol. 1996; 27: 1577–1585.

    Article  PubMed  CAS  Google Scholar 

  345. Pagano D, Camici PG. Relation of contractile reserve of hibernating myocardium to myo-cardial structure in humans. Circulation. 2000; 102: E189 - E190.

    Article  PubMed  CAS  Google Scholar 

  346. Stinson E, Billingham M. Correlative study of regional left ventricular histology and contractile function. Am J Cardiol. 1977; 39: 378–383.

    Article  PubMed  CAS  Google Scholar 

  347. Cabin HS, Clubbs KS, Vita N, Zaret BL. Regional dysfunction by equilibrium radionuclide angiography: A clinicopathologic study evaluating the relation of degree of dysfunction to the presence and extent of myocardial infarction. J Am Coll Cardiol. 1987; 10: 743–747.

    Article  CAS  Google Scholar 

  348. Flameng W, Suy R, Schwarz F, et al. Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of reversible segmental asynergy post-revascularization surgery. Am Heart J. 1981; 102: 846–857.

    Article  PubMed  CAS  Google Scholar 

  349. Schwarz E, Schaper J, vom Dahl J, et al. Myocardial hibernation is not sufficient to prevent morphological disarrangements with ischemic cell alterations and increased fibrosis. Circulation. 1994; 90: I - 378.

    Google Scholar 

  350. Schwaiger M, Sun D, Deeb G, et al. Expression of myocardial glucose transporter (GLUT) mRNAs in patients with advanced coronary artery disease (CAD). Circulation. 1994; 90: I - 113.

    Google Scholar 

  351. Brosius FC, III, Liu Y, Nguyen N, Sun D, Bartlett J, Schwaiger M. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and nonischemic heart regions. J Molec Cell Cardiol. 1997; 29: 1675–1685.

    Article  CAS  Google Scholar 

  352. Brosius FC, III, Nguyen N, Egert S, et al. Increased sarcolemmal glucose transporter abundance in myocardial ischemia. Am J Cardiol. 1997; 80: 77A - 84A.

    Article  PubMed  CAS  Google Scholar 

  353. Vogt AM, Nef H, Schaper J, et al. Metabolic control analysis of anaerobic glycolysis in human hibernating myocardium replaces traditional concepts of flux control. FEBS Lett. 2002; 517: 245–250.

    Article  PubMed  CAS  Google Scholar 

  354. Lopaschuk G, Stanley W. Glucose metabolism in the ischemic heart. Circulation. 1997; 95: 313–315.

    Article  PubMed  CAS  Google Scholar 

  355. Allman K, Wieland D, Muzik O, Degrado T, Wolfe E, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993; 22: 368–375.

    Article  PubMed  CAS  Google Scholar 

  356. Bengel F, Ueberfuhr P, Ziegler SI, et al. Effect of cardiac sympathetic innervation on metabolism of the human heart determined by positron emission tomography. Circulation. 1999;110:í.201.

    Google Scholar 

  357. Wiggers H, Noreng M, Paulsen PK, et al. Energy stores and metabolites in chronic reversibly and irreversibly dysfunctional myocardium in humans. JAm Coll Cardiol. 2001; 37: 100–108.

    Article  CAS  Google Scholar 

  358. Borgers M, Ausma J. Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol. 1995; 90: 44–46.

    PubMed  CAS  Google Scholar 

  359. Ausma J, Wijffels M, van Eys G, et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol. 1997; 151: 985–997.

    PubMed  CAS  Google Scholar 

  360. Depré C, Havaux X, Dion R, Vanoverschelde JL. Morphologic alterations of myocardium under conditions of left ventricular assistance. J Thorac Cardiovasc Surg. 1998; 115: 478–479.

    Article  PubMed  Google Scholar 

  361. Ausma J, Thonae F, Dispersyn GD, et al. Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Molec Cell Biochem. 1998; 186: 159–168.

    Article  PubMed  CAS  Google Scholar 

  362. Depré C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation. 1999; 99: 578–588.

    Article  PubMed  Google Scholar 

  363. Razeghi PW, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001; 104: 2923–2931.

    Article  PubMed  CAS  Google Scholar 

  364. Elsässer A, Schlepper M, Kleovekorn WP, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997; 96: 2920–2931.

    Article  PubMed  Google Scholar 

  365. Elsaesser A, Greiber S, Hein S, et al. Hibernating myocardium: Upregulation of the caspase-3 gene and reduction of bcl-2. Circulation. 1999;110: I. 758.

    Google Scholar 

  366. Brunken RC, Mody FV, Hawkins RA, Nienaber C, Phelps ME, Schelbert HR. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201T1 defects. Circulation. 1992; 86: 1357 1369.

    Google Scholar 

  367. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation. 1998;98:Ií51-I156.

    Google Scholar 

  368. Schwarz E, Schoendube F, Kostin S, et al. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol. 1998; 31: 1018–1026.

    Article  PubMed  CAS  Google Scholar 

  369. Nienaber CA, Brunken RC, Sherman CT, et al. Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty [see comments]. J Am Coll Cardiol. 1991; 18: 966–978.

    Article  PubMed  CAS  Google Scholar 

  370. Vanoverschelde JL, Depre C, Gerber BL, et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction. Am J Cardiol. 2000; 85: 1432–1439.

    Article  PubMed  CAS  Google Scholar 

  371. Marwick T, MacIntyre W, Lafont A, Nemec J, Salcedo E. Metabolic responses of hibernating and infarcted myocardium to revascularization: a follow-up study of regional perfusion, function, and metabolism. Circulation. 1992; 85: 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  372. Stevenson W, Stevenson L, Middlekauff H, et al. Improving survival for patients with advanced heart failure: A study of 737 consecutive patients. J Am Coll Cardiol. 1995; 26: 1417–1423.

    Article  PubMed  CAS  Google Scholar 

  373. Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation. 1983; 68: 785–795.

    Article  PubMed  CAS  Google Scholar 

  374. Passamani E, Davis KB, Gillespie MJ, Killip T. A randomized trial of coronary artery bypass surgery. Survival of patients with low ejection fraction. N Engl J Med. 1985; 312: 1665–1671.

    Article  PubMed  CAS  Google Scholar 

  375. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. JAm Coll Cardiol. 2002; 39: 1151–1158.

    Article  Google Scholar 

  376. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease [see comments]. JAm Coll Cardiol. 1997; 30: 1693–1700.

    Article  CAS  Google Scholar 

  377. Landoni C, Lucignani G, Paolini G, et al. Assessment of CABG-related risk in patients with CAD and LVD. Contribution of PET with [18F] FDG to the assessment of myocardial viability. J Cardiovasc Surg. 1999; 40: 363–372.

    CAS  Google Scholar 

  378. Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989; 64: 860–865.

    Article  PubMed  CAS  Google Scholar 

  379. Tamaki N, Yonekura Y, Yamashita K, et al. Prediction of reversible ischemia after coronary artery bypass grafting by positron emission tomography. J Cardiol. 1991; 21: 193201.

    Google Scholar 

  380. Carrel T, Jenni R, Haubold-Reuter S, Von Schulthess G, Pasic M, Turina M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg. 1992; 6: 479–484.

    Article  PubMed  CAS  Google Scholar 

  381. Lucignani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med. 1992; 19: 874–881.

    Article  PubMed  CAS  Google Scholar 

  382. Marwick TH, Maclntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation. 1992; 85: 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  383. Gropler RJ, Geltman EM, Sampathkumaran K, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol. 1993; 22: 1587–1597.

    Article  CAS  Google Scholar 

  384. Baer FM, Voth E, Deutsch HJ, et al. Predictive value of low dose dobutamine trans-esophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol. 1996; 28: 60–69.

    Article  CAS  Google Scholar 

  385. Marwick TH, Nemec JJ, Lafont A, Salcedo EE, Maclntyre WJ. Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol. 1992; 69: 854–859.

    Article  PubMed  CAS  Google Scholar 

  386. Paolini G, Lucignani G, Zuccari M, et al. Identification and revascularization of hibernating myocardium in angina-free patients with left ventricular dysfunction. Eur J Cardio-Thorac Surg. 1994; 8: 139–144.

    Article  CAS  Google Scholar 

  387. vom Dahl J, Eitzman D, Al-Aouar A, et al. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994; 90: 2356–2366.

    Article  Google Scholar 

  388. Bax JJ, Valkema R, Visser FC, et al. Detection of myocardial viability with F-18-fluorodeoxyglucose and single photon emission computed tomography [editorial]. Giorn Ital Cardiol. 1997; 27: 1181–1186.

    CAS  Google Scholar 

  389. Flameng WJ, Shivalkar B, Spiessens B, et al. PET scan predicts recovery of left ventricular function after coronary artery bypass operation. Ann Thorac Surg. 1997; 64: 1694–1701.

    Article  PubMed  CAS  Google Scholar 

  390. Fath-Ordoubadi F, Pagano D, Marinho NV, Keogh BE, Bonser RS, Camici PG. Coronary revascularization in the treatment of moderate and severe postischemic left ventricular dysfunction. Am J CardioL 1998; 82: 26–31.

    Article  PubMed  CAS  Google Scholar 

  391. Akinboboye 00, Idris O, Cannon PJ, Bergmann SR. Usefulness of positron emission tomography in defining myocardial viability in patients referred for cardiac transplantation. Am J Cardiol. 1999; 83: 1271–1274.

    Article  Google Scholar 

  392. Pagano D, Townend JN, Littler WA, Horton R, Camici PG, Bonser RS. Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thorac Cardiovasc Surg. 1998; 115: 791–799.

    Article  PubMed  CAS  Google Scholar 

  393. Marwick T, Nemec J, Lafont A, Salcedo E, Maclntyre W. Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol. 1992; 69: 854–859.

    Article  PubMed  CAS  Google Scholar 

  394. Marwick TH, Zuchowski C, Lauer MS, Secknus MA, Williams J, Lytle BW. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol. 1999; 33: 750–758.

    Article  CAS  Google Scholar 

  395. Haas F, Augustin N, Holper K, et al. Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: correlation with positron emission tomographic findings. J Am Coll Cardiol. 2000; 36: 1927–1934.

    Article  PubMed  CAS  Google Scholar 

  396. Eitzman D, Al-Aouar Z, Vom Dahl J, Kirsh M, Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with Positron Emission Tomography. J Am Coll Cardiol. 1992; 20: 559–565.

    Article  PubMed  CAS  Google Scholar 

  397. Di Carli M, Davidson M, Little R, et al. Value of metabolic imaging with Positron Emission Tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994; 73: 527–533.

    Article  PubMed  Google Scholar 

  398. Rohatgi R, Epstein S, Henriquez J, Ababneh AA, Hickey KT, Pinsky D, Akinboboye O, Bergmann SR. Utility of positron emission tomography in predicting cardiac events and survival in patients with coronary artery disease and severe left ventricular dysfunction. Am J Cardiol 2001;87: 1096–1099, A6.

    Google Scholar 

  399. Bax JJ, Visser FC, Poldermans D, et al. Relationship between preoperative viability and postoperative improvement in LVEF and heart failure symptoms. J Nucl Med. 2001; 42: 79–86.

    PubMed  CAS  Google Scholar 

  400. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation. 1995; 92: 3436–3444.

    Article  PubMed  Google Scholar 

  401. Goldman L, Hashimoto B, Cook E, Loscalzo A. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation. 1981; 64: 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  402. Tamaki N, Kawamoto M, Takahashi N, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol. 1993; 22: 1621–1627.

    Article  PubMed  CAS  Google Scholar 

  403. Lee KS, Marwick TH, Cook SA, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994; 90: 2687–2694.

    Article  PubMed  CAS  Google Scholar 

  404. Zhang X, Liu XJ, Wu Q, et al. Clinical outcome of patients with previous myocardial infarction and left ventricular dysfunction assessed with myocardial (99m)Tc-MIBI SPECT and (l8)F-FDG PET. J Nucl Med. 2001; 42: 1166–1173.

    PubMed  CAS  Google Scholar 

  405. Gioia G, Powers J, Heo J, Iskandrian AS. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardi0L 1995; 75: 759–762.

    Article  CAS  Google Scholar 

  406. Gioia G, Milan E, Giubbini R, DePace N, Heo J, Iskandrian AS. Prognostic value of tomographic rest-redistribution thallium 201 imaging in medically treated patients with coronary artery disease and left ventricular dysfunction. J Nucl Cardiol. 1996; 3: 150–156.

    Article  PubMed  CAS  Google Scholar 

  407. Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997; 96: 793–800.

    Article  PubMed  CAS  Google Scholar 

  408. Petretta M, Cuocolo A, Bonaduce D, et al. Incremental prognostic value of thallium reinjection after stress-redistribution imaging in patients with previous myocardial infarction and left ventricular dysfunction. J Nucl Med. 1997; 38: 195–200.

    PubMed  CAS  Google Scholar 

  409. Cuocolo A, Petretta M, Nicolai E, et al. Successful coronary revascularization improves prognosis in patients with previous myocardial infarction and evidence of viable myocardium at thallium-201 imaging. Eur J Nucl Med. 1998; 25: 60–68.

    Article  PubMed  CAS  Google Scholar 

  410. Dreyfus GD, Duboc D, Blasco A, et al. Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg. 1994;57:14021407; discussion 1407–1408.

    Google Scholar 

  411. Brunken R, Schwaiger M, Grover-McKay M, Phelps ME, Tillisch J, Schelbert HR. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol. 1987; 10: 557–567.

    Article  PubMed  CAS  Google Scholar 

  412. Brunken RC, Kottou S, Nienaber CA, et al. PET detection of viable tissue in myocardial segments with persistent defects at T1–201 SPECT. Radiology. 1989; 172: 65–73.

    PubMed  CAS  Google Scholar 

  413. Williams MJ, Odabashian J, Lauer MS, Thomas JD, Marwick TH. Prognostic value of dobutamine echocardiography in patients with left ventricular dysfunction. J Am Coll Cardiol. 1996; 27: 132–139.

    Article  CAS  Google Scholar 

  414. Afridi I, Grayburn PA, Panza JA, Oh JK, Zoghbi WA, Marwick TH. Myocardial viability during dobutamine echocardiography predicts survival in patients with coronary artery disease and severe left ventricular systolic dysfunction. J Am Coll Cardiol. 1998; 32: 921–926.

    Article  CAS  Google Scholar 

  415. Anselmi M, Golia G, Cicoira M, et al. Prognostic value of detection of myocardial viability using low-dose dobutamine echocardiography in infarcted patients. Am J Cardiol. 1998; 81: 21G - 28G.

    Article  PubMed  CAS  Google Scholar 

  416. Meluzin J, Cerny J, Frelich M, et al. Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. Investigators of this Multicenter Study. J Am Coll Cardiol. 1998; 32: 912–920.

    Article  PubMed  CAS  Google Scholar 

  417. Senior R, Kaul S, Lahiri A. Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J Am Coll Cardiol. 1999; 33: 1848–1854.

    Article  PubMed  CAS  Google Scholar 

  418. Smart SC, Dionisopoulos PN, Knickelbine TA, Schuchard T, Sagar KB. Dobutamineatropine stress echocardiography for risk stratification in patients with chronic left ventricular dysfunction. J Am Coll Cardiol. 1999; 33: 512–521.

    Article  CAS  Google Scholar 

  419. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999; 100: 1992 2002.

    Google Scholar 

  420. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000; 343: 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  421. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JAC. Accuaracy of contrast-enhanced magnetic resonance imaging in predicting improvement in regional myocardial function in patients after acute myocardial infarction. Circulation. 2002; 101: 1083–1089.

    Article  Google Scholar 

  422. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002; 105: 162–167.

    Article  PubMed  Google Scholar 

  423. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18Ffluorodeoxyglucose. Circulation. 1991; 83: 26–37.

    Article  PubMed  CAS  Google Scholar 

  424. Box JJ, Fath-Ordoubadi F, Boersma E, Wijns W, Camici G. Accuracy of PET in predicting functional recovery after revascularisation in patients with chronic ischaemic dysfunction: head-to-head comparison between blood flow, glucose utilisation and water-perfusable tissue fraction. Eur J Nucl Med Mol Imaging. 2002; 29: 721–727.

    Article  CAS  Google Scholar 

  425. Schwaiger M, Brunken RC, Krivokapich J, et al. Beneficial effect of residual anterograde flow on tissue viability as assessed by positron emission tomography in patients with myocardial infarction. Eur Heart J. 1987; 8: 981–988.

    PubMed  CAS  Google Scholar 

  426. Czernin J, Porenta G, Brunken R, et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation. 1993; 88: 884–895.

    Article  PubMed  CAS  Google Scholar 

  427. Feigl E, Neat G, Huang A. Interrelations between coronary artery pressure, myocardial metabolism and coronary blood flow. J Mol Cell Cardiol. 1990; 22: 375–390.

    Article  PubMed  CAS  Google Scholar 

  428. Maes A, Van de Werf F, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis. Impact on myocardial flow, metabolism, and function at late follow-up. Circulation. 1995; 92: 2072–2078.

    Article  PubMed  CAS  Google Scholar 

  429. Louie HW, Laks H, Milgalter E, et al. Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation. Circulation. 1991;84:I1I290–III295.

    Google Scholar 

  430. Duong T, Hendi P, Fonarow G, et al. Role of Positron Emission Tomographic assessment of myocardial viability in the management of patients who are referred for cardiac transplantation. Circulation. 1995; 92: I - 123.

    Google Scholar 

  431. Duong T, Fonarow G, Laks H, et al. Cost effectiveness of Positron Emission Tomography (PET) in the management of ischemic cardiomyopathy patients who are referred for cardiac transplantation. J Am Coll Cardiol. 1996; 27: 144A.

    Google Scholar 

  432. Maes AF, Van de Werf F, Mesotten LV, et al. Early assessment of regional myocardial blood flow and metabolism in thrombolysis in myocardial infarction flow grade 3 reperfused myocardial infarction using carbon-11-acetate. J Am Coll Cardiol. 2001; 37: 30–36.

    Article  PubMed  CAS  Google Scholar 

  433. Blumenthal RS, Becker DM, Moy TF, Coresh J, Wilder LB, Becker LC. Exercise thallium tomography predicts future clinically manifest coronary heart disease in a high-risk asymptomatic population. Circulation. 1996; 93: 915–923.

    Article  PubMed  CAS  Google Scholar 

  434. Becker DM, Yook RM, Moy TF, Blumenthal RS, Becker LC. Markedly high prevalence of coronary risk factors in apparently healthy African-American and white siblings of persons with premature coronary heart disease. Am J Cardiol. 1998; 82: 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  435. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation. 1994; 89: 1530–1538.

    Article  PubMed  CAS  Google Scholar 

  436. Furuyama H, Odagawa Y, Katoh C, et al. Assessment of coronary function in children with a history of Kawasaki disease using (15)0-water positron emission tomography. Circulation. 2002; 105: 2878–2884.

    Article  PubMed  Google Scholar 

  437. Hernandez-Pampaloni M, Allada V, Fishbein MC, Schelbert HR. Myocardial perfusion and viability by PET in infants and children with coronary abnormalities: correlation with echocardiography, cor angiogr histopathol. J Am Coll Cardiol. 2002; 41: 618–626.

    Article  Google Scholar 

  438. Bengel FM, Ueberfuhr P, Nekolla S, Ziegler SI, Reichart B, Schwaiger M. Oxidative metabolism of the transplanted human heart assessed by positron emission tomography using C-11 acetate. Am J Cardiol. 1999;83: 1503–1505, A8.

    Google Scholar 

  439. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation. 1999; 99: 1866–1871.

    Article  PubMed  CAS  Google Scholar 

  440. Annane D, Duboc D, Mazoyer B, et al. Correlation between decreased myocardial glucose phosphorylation and the DNA mutation size in myotonic dystrophy. Circulation. 1994; 90: 2629–2634.

    Article  PubMed  CAS  Google Scholar 

  441. Annane D, Merlet P, Radvanyi H, et al. Blunted coronary reserve in myotonic dystrophy. An early and gene-related phenomenon. Circulation. 1996; 94: 973–977.

    Article  PubMed  CAS  Google Scholar 

  442. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet. 2001; 357: 279–280.

    Article  PubMed  CAS  Google Scholar 

  443. Di Carli MF, Maddahi J, Rokhsar S, et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg. 1998; 116: 997 1004.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Schelbert, H.R. (2004). Positron Emission Tomography of the Heart: Methodology, Findings in the Normal and the Diseased Heart, and Clinical Applications. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics