Skip to main content

Ocular Tissue Engineering

  • Conference paper
Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 585))

Abstract

In the early 1990s, tissue engineering emerged as a new concept to overcome the problem of tissue and organ failure. It proposed to supply engineered, yet biological, organ and tissue substitutes. It was anticipated that this technology would soon allow us to overcome donor shortages and graft rejection, the major limitations of tissue and organ transplantation. Tissue engineering approaches that were developed on the basis of this paradigm relied on the use of cells and stem cells, preferably of autologous origin, the application of growth factors and cytokines, the design of biodegradable scaffolds and bioreactor technology1, 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

27.8. References

  1. R. Langer and J. P. Vacanti, Tissue engineering, Science 260(5110), 920–926 (1993).

    Article  Google Scholar 

  2. T. Blunk, A. Goepferich, and J. Tessmar, Special issue Biomimetic Polymers, Biomaterials 24(24), 4335–4335 (2003).

    Article  Google Scholar 

  3. W. C. Puelacher, J. P. Vacanti, N. F. Ferraro, B. Schloo, and C. A. Vacanti, Femoral shaft reconstruction using tissue-engineered growth of bone, Int.J.Oral Maxillofac.Surg. 25(3), 223–228 (1996).

    Article  Google Scholar 

  4. T. Shinoka, C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr., Tissue engineering heart valves: valve leaflet replacement study in a lamb model, Ann.Thorac.Surg. 60(6 Suppl), S513–S516 (1995).

    Article  Google Scholar 

  5. J. Leor, Y. Amsalem, and S. Cohen, Cells, scaffolds, and molecules for myocardial tissue engineering, Pharmacol.Ther. 105(2), 151–163 (2005).

    Article  Google Scholar 

  6. C. A. Vacanti, R. Langer, B. Schloo, and J. P. Vacanti, Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation, Plast.Reconstr.Surg. 88(5), 753–759 (1991).

    Article  Google Scholar 

  7. C. Fischbach, J. Seufert, H. Staiger, M. Hacker, M. Neubauer, A. Goepferich, and T. Blunk, Threedimensional in vitro model of adipogenesis: comparison of culture conditions, Tissue Eng. 10(1–2), 215–229 (2004).

    Article  Google Scholar 

  8. S. Reichl, J. Bednarz, and C. C. Mueller-Goymann, Human corneal equivalent as cell culture model for in vitro drug permeation studies, Br.J.Ophthalmol. 88(4), 560–565 (2004).

    Article  Google Scholar 

  9. J. Yang, M. Yamato, C. Kohno, A. Nishimoto, H. Sekine, F. Fukai, and T. Okano, Cell sheet engineering: Recreating tissues without biodegradable scaffolds, Biomaterials 26(33), 6415–6422 (2005).

    Article  Google Scholar 

  10. K. H. Bouhadir and D. J. Mooney, Promoting angiogenesis in engineered tissues, J.Drug Target. 9(6), 397–406 (2001).

    Article  Google Scholar 

  11. Z. S. Patel and A. G. Mikos, Angiogenesis with biomaterial-based drug-and cell-delivery systems, J.Biomater.Sci.Polym.Ed. 15(6), 701–726 (2004).

    Article  Google Scholar 

  12. M. Nomi, A. Atala, P. D. Coppi, and S. Soker, Principals of neovascularization for tissue engineering, Mol.Aspects Med. 23(6), 463–483 (2002).

    Google Scholar 

  13. A. H. Zisch, M. P. Lutolf, and J. A. Hubbell, Biopolymeric delivery matrices for angiogenic growth factors, Cardiovasc.Pathol. 12(6), 295–310 (2003).

    Article  Google Scholar 

  14. U. S. Centers for Disease Control and Prevention (CDC), Prevalence of visual impairment and selected eye diseases among persons aged >/=50 years with and without diabetes, MMWR Morb.Mortal Wkly.Rep. 53(45), 1069–1071 (2004).

    Google Scholar 

  15. S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, Global data on visual impairment in the year 2002, Bull.World Health Organ. 82(11), 844–851 (2004).

    Google Scholar 

  16. K. D. Frick and A. Foster, The magnitude and cost of global blindness: an increasing problem that can be alleviated, Am.J.Ophthalmol. 135(4), 471–476 (2003).

    Article  Google Scholar 

  17. D. G. Pitts and R. N. Kleinstein, Environmental Vision (Butterworth-Heinemann, Boston, 1993).

    Google Scholar 

  18. R. A. Thoft and J. Friend, The X, Y, Z hypothesis of corneal epithelial maintenance, Invest.Ophthalmol.Vis.Sci. 24(10), 1442–1443 (1983).

    Google Scholar 

  19. R. M. Lavker, G. Dong, S. Z. Cheng, K. Kudoh, G. Cotsarelis, and T. T. Sun, Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes, Invest.Ophthalmol.Vis.Sci. 32(6), 1864–1875 (1991).

    Google Scholar 

  20. A. Schermer, S. Galvin, and T. T. Sun, Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells, J.Cell Biol. 103(1), 49–62 (1986).

    Article  Google Scholar 

  21. G. Cotsarelis, S. Z. Cheng, G. Dong, T. T. Sun, and R. M. Lavker, Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells, Cell 57(2), 201–209 (1989).

    Article  Google Scholar 

  22. H. S. Dua and J. V. Forrester, The corneoscleral limbus in human corneal epithelial wound healing, Am.J.Ophthalmol. 110(6), 646–656 (1990).

    Google Scholar 

  23. K. R. Kenyon and S. C. Tseng, Limbal autograft transplantation for ocular surface disorders, Ophthalmology 96(5), 709–722 (1989).

    Google Scholar 

  24. J. J. Chen and S. C. Tseng, Corneal epithelial wound healing in partial limbal deficiency, Invest.Ophthalmol.Vis.Sci. 31(7), 1301–1314 (1990).

    Google Scholar 

  25. K. Tsubota, Y. Satake, M. Kaido, N. Shinozaki, S. Shimmura, H. Bissen-Miyajima, and J. Shimazaki, Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation, N.Engl.J.Med. 340(22), 1697–1703 (1999).

    Article  Google Scholar 

  26. L. Germain, P. Carrier, F. A. Auger, C. Salesse, and S. L. Guerin, Can we produce a human corneal equivalent by tissue engineering?, Prog.Retin.Eye Res. 19(5), 497–527 (2000).

    Article  Google Scholar 

  27. G. Pellegrini, C. E. Traverso, A. T. Franzi, M. Zingirian, R. Cancedda, and M. De Luca, Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium, Lancet 349(9057), 990–993 (1997).

    Article  Google Scholar 

  28. K. Nishida, Tissue engineering of the cornea, Cornea 22(7 Suppl), S28–S34 (2003).

    Article  Google Scholar 

  29. G. M. Tosi, M. Massaro-Giordano, A. Caporossi, and P. Toti, Amniotic membrane transplantation in ocular surface disorders, J.Cell.Physiol. 202(3), 849–851 (2005).

    Article  Google Scholar 

  30. J. C. Kim and S. C. Tseng, Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas, Cornea 14(5), 473–484 (1995).

    Article  Google Scholar 

  31. R. J. Tsai, L. M. Li, and J. K. Chen, Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells, N.Engl.J.Med. 343(2), 86–93 (2000).

    Article  Google Scholar 

  32. P. Rama, S. Bonini, A. Lambiase, O. Golisano, P. Paterna, M. De Luca, and G. Pellegrini, Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency, Transplantation 72(9), 1478–1485 (2001).

    Article  Google Scholar 

  33. B. A. Schechter, W. J. Rand, R. S. Nagler, I. Estrin, S. S. Arnold, N. Villate, and G. E. Velazquez, Corneal melt after amniotic membrane transplant, Cornea 24(1), 106–107 (2005).

    Article  Google Scholar 

  34. N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, and Y. Sakurai, Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells, Makromolekulare Chemie, Rapid Communications 11(11), 571–576 (1990).

    Article  Google Scholar 

  35. M. Yamato, M. Utsumi, A. Kushida, C. Konno, A. Kikuchi, and T. Okano, Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature, Tissue Eng. 7(4), 473–480 (2001).

    Article  Google Scholar 

  36. K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, N. Maeda, H. Watanabe, K. Yamamoto, S. Nagai, A. Kikuchi, Y. Tano, and T. Okano, Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface, Transplantation 77(3), 379–385 (2004).

    Article  Google Scholar 

  37. K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, and Y. Tano, Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium, N.Engl.J.Med. 351(12), 1187–1196 (2004).

    Article  Google Scholar 

  38. S. Kinoshita and T. Nakamura, Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction, Artif.Organs 28(1), 22–27 (2004).

    Article  Google Scholar 

  39. S. Kinoshita, N. Koizumi, and T. Nakamura, Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction, Exp.Eye Res. 78(3), 483–491 (2004).

    Article  Google Scholar 

  40. G. Pellegrini, Changing the cell source in cell therapy?, N.Engl.J.Med. 351(12), 1170–1172 (2004).

    Article  Google Scholar 

  41. M. J. Doughty and J. P. G. Bergmanson, Resolution and reproducibility of measures of the diameter of small collagen fibrils by transmission electron microscopy—application to the rabbit corneal stroma, Micron 36(4), 331–343 (2005).

    Article  Google Scholar 

  42. C. J. Doillon, M. A. Watsky, M. Hakim, J. Wang, R. Munger, N. Laycock, R. Osborne, and M. Griffith, A collagen-based scaffold for a tissue engineered human cornea: physical and physiological properties, Int.J.Artif.Organs 26(8), 764–773 (2003).

    Google Scholar 

  43. M. Griffith, R. Osborne, R. Munger, X. Xiong, C. J. Doillon, N. L. Laycock, M. Hakim, Y. Song, and M. A. Watsky, Functional human corneal equivalents constructed from cell lines, Science 286(5447), 2169–2172 (1999).

    Article  Google Scholar 

  44. L. Germain, F. A. Auger, E. Grandbois, R. Guignard, M. Giasson, H. Boisjoly, and S. L. Guerin, Reconstructed human cornea produced in vitro by tissue engineering, Pathobiology 67(3), 140–147 (1999).

    Article  Google Scholar 

  45. X. Hu, M. Wang, G. Chai, Y. Zhang, W. Li, W. Liu, and Y. Cao, Reconstruction of rabbit corneal stroma using tissue engineering technique, Zhonghua Yan Ke Za Zhi 40(8), 517–521 (2004).

    Google Scholar 

  46. D. M. Maurice, The location of the fluid pump in the cornea, J.Physiol. 221(1), 43–54 (1972).

    Google Scholar 

  47. G. O. Waring, III, W. M. Bourne, H. F. Edelhauser, and K. R. Kenyon, The corneal endothelium. Normal and pathologic structure and function, Ophthalmology 89(6), 531–590 (1982).

    Google Scholar 

  48. J. P. McCulley, D. M. Maurice, and B. D. Schwartz, Corneal endothelial transplantation, Ophthalmology 87(3), 194–201 (1980).

    Google Scholar 

  49. M. S. Insler and J. G. Lopez, Extended incubation times improve corneal endothelial cell transplantation success, Invest.Ophthalmol.Vis.Sci. 32(6), 1828–1836 (1991).

    Google Scholar 

  50. Y. Ishino, Y. Sano, T. Nakamura, C. J. Connon, H. Rigby, N. J. Fullwood, and S. Kinoshita, Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation, Invest.Ophthalmol.Vis.Sci. 45(3), 800–806 (2004).

    Article  Google Scholar 

  51. T. Mimura, S. Amano, T. Usui, M. Araie, K. Ono, H. Akihiro, S. Yokoo, and S. Yamagami, Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats, Exp.Eye Res. 79(2), 231–237 (2004).

    Article  Google Scholar 

  52. T. Mimura, N. Shimomura, T. Usui, Y. Noda, Y. Kaji, S. Yamgami, S. Amano, K. Miyata, and M. Araie, Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane, Exp.Eye Res. 76(6), 745–751 (2003).

    Article  Google Scholar 

  53. T. Mimura, S. Yamagami, T. Usui, Y. Ishii, K. Ono, S. Yokoo, H. Funatsu, M. Araie, and S. Amano, Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction, Exp.Eye Res. 80(2), 149–157 (2005).

    Article  Google Scholar 

  54. K. Engelmann, J. Bednarz, and M. Valtink, Prospects for endothelial transplantation, Exp.Eye Res. 78(3), 573–578 (2004).

    Article  Google Scholar 

  55. M. E. Stern, R. W. Beuerman, R. I. Fox, J. Gao, A. K. Mircheff, and S. C. Pflugfelder, A unified theory of the role of the ocular surface in dry eye, Adv.Exp.Med.Biol. 438, 643–651 (1998).

    Google Scholar 

  56. F. Li, D. Carlsson, C. Lohmann, E. Suuronen, S. Vascotto, K. Kobuch, H. Sheardown, R. Munger, M. Nakamura, and M. Griffith, Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation, Proc.Natl.Acad.Sci.U.S.A. 100(26), 15346–15351 (2003).

    Article  Google Scholar 

  57. D. Bok, The retinal pigment epithelium: a versatile partner in vision, J.Cell Sci.Suppl. 17, 189–195 (1993).

    Google Scholar 

  58. B. S. Hawkins, A. Bird, R. Klein, and S. K. West, Epidemiology of age-related macular degeneration, Mol.Vis. 5, 26 (1999).

    Google Scholar 

  59. T. H. Tezel, N. S. Bora, and H. J. Kaplan, Pathogenesis of age-related macular degeneration, Trends Mol.Med. 10(9), 417–420 (2004).

    Article  Google Scholar 

  60. P. V. Algvere, L. Berglin, P. Gouras, Y. Sheng, and E. D. Kopp, Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy, Graefes Arch.Clin.Exp.Ophthalmol. 235(3), 149–158 (1997).

    Article  Google Scholar 

  61. P. V. Algvere, P. Gouras, and K. E. Dafgard, Long-term outcome of RPE allografts in nonimmunosuppressed patients with AMD, Eur.J.Ophthalmol. 9(3), 217–230 (1999).

    Google Scholar 

  62. S. Binder, I. Krebs, R. D. Hilgers, A. Abri, U. Stolba, A. Assadoulina, L. Kellner, B. V. Stanzel, C. Jahn, and H. Feichtinger, Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial, Invest.Ophthalmol.Vis.Sci. 45(11), 4151–4160 (2004).

    Article  Google Scholar 

  63. S. Binder, U. Stolba, I. Krebs, L. Kellner, C. Jahn, H. Feichtinger, M. Povelka, U. Frohner, A. Kruger, R. D. Hilgers, and W. Krugluger, Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study, Am.J.Ophthalmol. 133(2), 215–225 (2002).

    Article  Google Scholar 

  64. P. Gouras, H. Cao, Y. Sheng, T. Tanabe, Y. Efremova, and H. Kjeldbye, Patch culturing and transfer of human fetal retinal epithelium, Graefes Arch.Clin.Exp.Ophthalmol. 232(10), 599–607 (1994).

    Article  Google Scholar 

  65. G. M. Acland, G. D. Aguirre, J. Ray, Q. Zhang, T. S. Aleman, A. V. Cideciyan, S. E. Pearce-Kelling, V. Anand, Y. Zeng, A. M. Maguire, S. G. Jacobson, W. W. Hauswirth, and J. Bennett, Gene therapy restores vision in a canine model of childhood blindness, Nat.Genet. 28(1), 92–95 (2001).

    Article  Google Scholar 

  66. L. Lu, K. Nyalakonda, L. Kam, R. Bizios, A. Goepferich, and A. G. Mikos, Retinal pigment epithelial cell adhesion on novel micropatterned surfaces fabricated from synthetic biodegradable polymers, Biomaterials 22(3), 291–297 (2001).

    Article  Google Scholar 

  67. R. C. Thomson, G. G. Giordano, J. H. Collier, S. L. Ishaug, A. G. Mikos, D. Lahiri-Munir, and C. A. Garcia, Manufacture and characterization of poly(alpha-hydroxy ester) thin films as temporary substrates for retinal pigment epithelium cells, Biomaterials 17(3), 321–327 (1996).

    Article  Google Scholar 

  68. L. Lu, C. A. Garcia, and A. G. Mikos, Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films, J.Biomater.Sci.Polym.Ed. 9(11), 1187–1205 (1998).

    Google Scholar 

  69. G. G. Giordano, R. C. Thomson, S. L. Ishaug, A. G. Mikos, S. Cumber, C. A. Garcia, and D. Lahiri-Munir, Retinal pigment epithelium cells cultured on synthetic biodegradable polymers, J.Biomed.Mater.Res. 34(1), 87–93 (1997).

    Article  Google Scholar 

  70. L. Lu, L. Kam, M. Hasenbein, K. Nyalakonda, R. Bizios, A. Goepferich, J. F. Young, and A. G. Mikos, Retinal pigment epithelial cell function on substrates with chemically micropatterned surfaces, Biomaterials 20(23–24), 2351–2361 (1999).

    Article  Google Scholar 

  71. L. Lu, M. J. Yaszemski, and A. G. Mikos, Retinal pigment epithelium engineering using synthetic biodegradable polymers, Biomaterials 22(24), 3345–3355 (2001).

    Article  Google Scholar 

  72. K. Ohno-Matsui, S. Ichinose, K. Nakahama, T. Yoshida, A. Kojima, M. Mochizuki, and I. Morita, The effects of amniotic membrane on retinal pigment epithelial cell differentiation, Mol.Vis. 11, 1–10 (2005).

    Google Scholar 

  73. B. V. Stanzel, E. M. Espana, M. Grueterich, T. Kawakita, J. M. Parel, S. C. Tseng, and S. Binder, Amniotic membrane maintains the phenotype of rabbit retinal pigment epithelial cells in culture, Exp.Eye Res. 80(1), 103–112 (2005).

    Article  Google Scholar 

  74. H. S. Dua, Amniotic membrane transplantation, Br.J.Ophthalmol. 83(6), 748–752 (1999).

    Article  Google Scholar 

  75. H. A. von Recum, T. Okano, S. W. Kim, and P. S. Bernstein, Maintenance of retinoid metabolism in human retinal pigment epithelium cell culture, Exp.Eye Res. 69(1), 97–107 (1999).

    Article  Google Scholar 

  76. H. von Recum, A. Kikuchi, M. Okuhara, Y. Sakurai, T. Okano, and S. W. Kim, Retinal pigmented epithelium cultures on thermally responsive polymer porous substrates, J.Biomater.Sci.Polym.Ed. 9(11), 1241–1253 (1998).

    Google Scholar 

  77. A. Ito, E. Hibino, C. Kobayashi, H. Terasaki, H. Kagami, M. Ueda, T. Kobayashi, and H. Honda, Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force, Tissue Eng. 11(3–4), 489–496 (2005).

    Article  Google Scholar 

  78. P. Gouras and P. Algvere, Retinal cell transplantation in the macula: new techniques, Vision Res. 36(24), 4121–4125 (1996).

    Article  Google Scholar 

  79. T. H. Tezel and L. V. Del Priore, Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium, Graefes Arch.Clin.Exp.Ophthalmol. 235(1), 41–47 (1997).

    Article  Google Scholar 

  80. T. H. Tezel, L. V. Del Priore, and H. J. Kaplan, Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation, Invest.Ophthalmol.Vis.Sci. 45(9), 3337–3348 (2004).

    Article  Google Scholar 

  81. V. K. Gullapalli, I. K. Sugino, Y. Van Patten, S. Shah, and M. A. Zarbin, Impaired RPE survival on aged submacular human Bruch’s membrane, Exp.Eye Res. 80(2), 235–248 (2005).

    Article  Google Scholar 

  82. T. C. Ho, L. V. Del Priore, and H. J. Kaplan, En bloc transfer of extracellular matrix in vitro, Curr.Eye Res. 15(9), 991–997 (1996).

    Article  Google Scholar 

  83. G. J. Farrar, P. F. Kenna, and P. Humphries, On the genetics of retinitis pigmentosa and on mutationindependent approaches to therapeutic intervention, EMBO J. 21(5), 857–864 (2002).

    Article  Google Scholar 

  84. F. H. Gage, Mammalian neural stem cells, Science 287(5457), 1433–1438 (2000).

    Article  Google Scholar 

  85. I. Ahmad, L. Tang, and H. Pham, Identification of Neural Progenitors in the Adult Mammalian Eye, Biochem.Biophys.Res.Commun. 270(2), 517–521 (2000).

    Article  Google Scholar 

  86. V. Tropepe, B. L. Coles, B. J. Chiasson, D. J. Horsford, A. J. Elia, R. R. McInnes, and D. van der Kooy, Retinal stem cells in the adult mammalian eye, Science 287(5460), 2032–2036 (2000).

    Article  Google Scholar 

  87. M. Takahashi, T. D. Palmer, J. Takahashi, and F. H. Gage, Widespread integration and survival of adultderived neural progenitor cells in the developing optic retina, Mol.Cell.Neurosci. 12(6), 340–348 (1998).

    Article  Google Scholar 

  88. D. M. Chacko, J. A. Rogers, J. E. Turner, and I. Ahmad, Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat, Biochem.Biophys.Res.Commun. 268(3), 842–846 (2000).

    Article  Google Scholar 

  89. I. Ahmad, Stem cells: new opportunities to treat eye diseases, Invest.Ophthalmol.Vis.Sci. 42(12), 2743–2748 (2001).

    Google Scholar 

  90. D. M. Chacko, A. V. Das, X. Zhao, J. James, S. Bhattacharya, and I. Ahmad, Transplantation of ocular stem cells: the role of injury in incorporation and differentiation of grafted cells in the retina, Vision Res. 43(8), 937–946 (2003).

    Article  Google Scholar 

  91. G. Qiu, M. J. Seiler, C. Mui, S. Arai, R. B. Aramant, J. Juan, and S. Sadda, Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats, Exp.Eye Res. 80(4), 515–525 (2005).

    Article  Google Scholar 

  92. H. Klassen, D. S. Sakaguchi, and M. J. Young, Stem cells and retinal repair, Prog.Retin.Eye Res. 23(2), 149–181 (2004).

    Article  Google Scholar 

  93. I. Ahmad, A. V. Das, J. James, S. Bhattacharya, and X. Zhao, Neural stem cells in the mammalian eye: types and regulation, Semin.Cell Dev.Biol. 15(1), 53–62 (2004).

    Article  Google Scholar 

  94. E. B. Lavik, H. Klassen, K. Warfvinge, R. Langer, and M. J. Young, Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors, Biomaterials 26(16), 3187–3196 (2005).

    Article  Google Scholar 

  95. P. Yang, M. J. Seiler, R. B. Aramant, and S. R. Whittemore, In Vitro Isolation and Expansion of Human Retinal Progenitor Cells, Exp.Neurol. 177(1), 326–331 (2002).

    Article  Google Scholar 

  96. H. Klassen, B. Ziaeian, I. I. Kirov, M. J. Young, and P. H. Schwartz, Isolation of retinal progenitor cells from post-mortem human tissue and comparison with autologous brain progenitors, J.Neurosci.Res. 77(3), 334–343 (2004).

    Article  Google Scholar 

  97. P. G. Layer, A. Robitzki, A. Rothermel, and E. Willbold, Of layers and spheres: the reaggregate approach in tissue engineering, Trends Neurosci. 25(3), 131–134 (2002).

    Article  Google Scholar 

  98. D. M. Gamm, A. D. Nelson, and C. N. Svendsen, Human retinal progenitor cells grown as neurospheres demonstrate time-dependent changes in neuronal and glial cell fate potential, Ann.N.Y.Acad.Sci. 1049, 107–117 (2005).

    Article  Google Scholar 

  99. K. Dutt, S. Harris-Hooker, D. Ellerson, D. Layne, R. Kumar, and R. Hunt, Generation of 3D retina-like structures from a human retinal cell line in a NASA bioreactor, Cell Transplant. 12(7), 717–731 (2003).

    Google Scholar 

  100. I. Kocur and S. Resnikoff, Visual impairment and blindness in Europe and their prevention, British Journal of Ophthalmology 86(7), 716–722 (2002).

    Article  Google Scholar 

  101. P. J. Francis, V. Berry, A. T. Moore, and S. Bhattacharya, Lens biology: development and human cataractogenesis, Trends Genet. 15(5), 191–196 (1999).

    Article  Google Scholar 

  102. D. J. Apple, K. D. Solomon, M. R. Tetz, E. I. Assia, E. Y. Holland, U. F. Legler, J. C. Tsai, V. E. Castaneda, J. P. Hoggatt, and A. M. Kostick, Posterior capsule opacification, Surv.Ophthalmol. 37(2), 73–116 (1992).

    Article  Google Scholar 

  103. P. A. Tsonis and K. Rio-Tsonis, Lens and retina regeneration: transdifferentiation, stem cells and clinical applications, Exp.Eye Res. 78(2), 161–172 (2004).

    Article  Google Scholar 

  104. P. A. Tsonis, M. Madhavan, E. E. Tancous, and K. Rio-Tsonis, A newt’s eye view of lens regeneration, Int.J.Dev.Biol. 48(8–9), 975–980 (2004).

    Article  Google Scholar 

  105. M. K. Call, M. W. Grogg, K. Rio-Tsonis, and P. A. Tsonis, Lens regeneration in mice: implications in cataracts, Exp.Eye Res. 78(2), 297–299 (2004).

    Article  Google Scholar 

  106. G. Eguchi, Lens transdifferentiation in the vertebrate retinal pigmented epithelial cell, Progress in Retinal Research 12, 205–230 (1993).

    Article  Google Scholar 

  107. G. Eguchi, in: Cellular and Molecular Basis of Regeneration. From Invertebrates to Humans, edited by P. Ferretti and J. Geraudie (John Wiley & Sons, Chichester, 1998).

    Google Scholar 

  108. P. A. Tsonis, W. Jang, K. Rio-Tsonis, and G. Eguchi, A unique aged human retinal pigmented epithelial cell line useful for studying lens differentiation in vitro, Int.J.Dev.Biol. 45(5–6), 753–758 (2001).

    Google Scholar 

  109. F. Sommer, K. Kobuch, F. Brandl, B. Wild, B. Weiser, V.-P. Gabel, T. Blunk, and A. Goepferich, Ascorbic acid for in vitro hyalocyte culture-an important factor towards a cellular vitreous substitute, in: Aegean Conferences Series 16, 124–125, 2nd International Conference on Tissue Engineering, Crete, Greece, May 22–27, (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sommer, F., Brandl, F., Göpferich, A. (2006). Ocular Tissue Engineering. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics