Skip to main content

Polyamines in Bacteria: Pleiotropic Effects yet Specific Mechanisms

  • Chapter
The Genus Yersinia

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 603))

Extensive data in a wide range of organisms point to the importance of polyamine homeostasis for growth. The two most common polyamines found in bacteria are putrescine and spermidine. The investigation of polyamine function in bacteria has revealed that they are involved in a number of functions other than growth, which include incorporation into the cell wall and biosynthesis of siderophores. They are also important in acid resistance and can act as a free radical ion scavenger. More recently it has been suggested that polyamines play a potential role in signaling cellular differentiation in Proteus mirabilis. Polyamines have also been shown to be essential in biofilm formation in Yersinia pestis. The pleiotropic nature of polyamines has made their investigation difficult, particularly in discerning any specific effect from more global growth effects. Here we describe key developments in the investigation of the function of polyamines in bacteria that have revealed new roles for polyamines distinct from growth. We describe the bacterial genes necessary for biosynthesis and transport, with a focus on Y. pestis. Finally we review a novel role for polyamines in the regulation of biofilm development in Y. pestis and provide evidence that the investigation of polyamines in Y. pestis may provide a model for understanding the mechanism through which polyamines regulate biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balasundaram, D. and Tyagi, A.K. (1991) Polyamine--DNA nexus: structural ramifications and biological implications. Mol. Cell Biochem. 100, 129-140.

    Article  CAS  PubMed  Google Scholar 

  • Brickman, T.J. and Armstrong, S.K. (1996) The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin. J. Bacteriol. 178, 54-60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, M.K., Tabor, C.W. and Tabor, H. (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. PNAS USA 100, 2261-2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field, A.M., Rowatt, E. and Williams, R.J. (1989) The interaction of cations with lipopolysaccharide from Escherichia coli C as shown by measurement of binding constants and aggregation reactions. Biochem. J. 263, 695-702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, J.W. (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2, 898-907.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, G.L., Sigel, S.P., Payne, S.M. and Neilands, J.B. (1984) Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem. 259, 383-385.

    CAS  PubMed  Google Scholar 

  • Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M. and Casero, R.A., (1998) The natural polyamine spermine functions directly as a free radical scavenger. PNAS USA 95, 11140-11145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackert, M.L., Carroll, D.W., Davidson, L., Kim, S.O., Momany, C., Vaaler, G.L. and Zhang, L. (1994) Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a. J. Bacteriol. 176, 7391-7394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamana, K., Saito, T., Okada, M., Sakamoto, A. and Hosoya, R. (2002) Covalently linked polyamines in the cell wall peptidoglycan of Selenomonas, Anaeromusa, Dendrosporobacter, Acidaminococcus and Anaerovibrio belonging to the Sporomusa subbranch. J. Gen. Appl. Microbiol. 48, 177-180.

    Article  CAS  PubMed  Google Scholar 

  • Hirao, T., Sato, M., Shirahata, A. and Kamio, Y. (2000) Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica. J. Bacteriol. 182, 1154-1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi, K., Ito, K. and Kashiwagi, K. (2001) Polyamine uptake systems in Escherichia coli. Res. Microbiol. 152, 271-278.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, K. and Kashiwagi, K. (1999) Polyamine transport in bacteria and yeast. Biochem. J. 344, 633-642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer, R., Williams, C. and Miller, C. (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 185, 6556-6561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, I.L., Oh, T.J. and Kim, I.G. (2003) Abnormal growth of polyamine-deficient Escherichia coli mutant is partially caused by oxidative stress-induced damage. Arch. Biochem. Biophys. 418, 125-132.

    Article  CAS  PubMed  Google Scholar 

  • Kamio, Y. (1987) Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J. Bacteriol. 169, 4837-4840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamio, Y. and Nakamura, K. (1987) Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J. Bacteriol. 169, 2881-2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamio, Y., Pösö, H., Terawaki, Y. and Paulin, L. (1986) Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. J. Biol. Chem. 261, 6585-6589.

    CAS  PubMed  Google Scholar 

  • Karatan, E., Duncan, T.R. and Watnick, P.I. (2005) NspS, a Predicted Polyamine Sensor, Mediates Activation of Vibrio cholerae Biofilm Formation by Norspermidine. J. Bacteriol. 187, 7434-7443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi, K., Kobayashi, H. and Igarashi, K. (1986) Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli. J. Bacteriol. 165, 972-977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi, K., Shibuya, S., Tomitori, H., Kuraishi, A. and Igarashi, K. (1997) Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J. Biol. Chem. 272, 6318-6323.

    Article  CAS  PubMed  Google Scholar 

  • Koski, P. and Vaara, M. (1991) Polyamines as constituents of the outer membranes of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 173, 3695-3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J., Smith, M.P., Chapin, K.C., Baik, H.S., Bennett, G.N. and Foster, J.W. (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 62, 3094-3100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindemose, S., Nielsen, P.E. and Mollegaard, N.E. (2005) Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Res. 33, 1790-1803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litwin, C.M. and Calderwood, S.B. (1993) Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6, 137-149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrell, D.S. and Camilli, A. (2000) Regulation of Vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J. Bacteriol. 182, 5342-5350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto, S., Kashiwagi, K., Ito, K., Watanabe, S. and Igarashi, K. (1993) Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch. Biochem. Biophys. 300, 63-68.

    Article  CAS  PubMed  Google Scholar 

  • Mushegian, A.R. and Koonin, E.V. (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. PNAS 93, 10268-10273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1-32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastre, D., Pietrement, O., Landousy, F., Hamon, L., Sorel, I., David, M.O., Delain, E., Zozime, A. and Le Cam, E. (2006) A new approach to DNA bending by polyamines and its implication in DNA condensation. Eur. Biophys. J. 35, 214-223.

    Article  CAS  PubMed  Google Scholar 

  • Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D. and Oliveira, M.A. (2006) Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355-2363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L. and Simon, D. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620-5629.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard, H. and Foster, J.W. (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186, 6032-6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samartzidou, H., Mehrazin, M., Xu, Z., Benedik, M.J. and Delcour, A.H. (2003) Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol. 185, 13-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandmeier, E., Hale, T.I. and Christen, P. (1994) Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Eur. J. Biochem. 221, 997-1002.

    Article  CAS  PubMed  Google Scholar 

  • Souzu, H. (1986) Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. II. Stabilization of the membranes by polyamines. Biochim. Biophys. Acta 861, 361-367.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, L.G. and Rather, P.N. (2006) A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J. Bacteriol. 188, 7830-7839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill, G. and Rather, P.N. (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 51, 437-446.

    Article  CAS  PubMed  Google Scholar 

  • Tabor, C.W. and Tabor, H. (1985) Polyamines in microorganisms. Microbiol. Rev. 49, 81-99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuka, Y. and Kamio, Y. (2004) Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer. Biosci. Biotechnol. Biochem. 68, 1-19.

    Article  CAS  PubMed  Google Scholar 

  • Terui, Y., Ohnuma, M., Hiraga, K., Kawashima, E. and Oshima, T. (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem. J. 388, 427-433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tkachenko, A., Nesterova, L. and Pshenichnov, M. (2001) The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176, 155-157.

    Article  CAS  PubMed  Google Scholar 

  • Vassylyev, D.G., Tomitori, H., Kashiwagi, K., Morikawa, K. and Igarashi, K. (1998) Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity. J. Biol. Chem. 273, 17604-17609.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, H.M., Fraser, A.V. and Hughes, A. (2003) A perspective of polyamine metabolism. Biochem. J. 376, 1-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ware, D., Jiang, Y., Lin, W. and Swiatlo, E. (2006) Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect. Immun. 74, 352-361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, M., Kashiwagi, K., Shigemasa, A., Taniguchi, S., Yamamoto, K., Makinoshima, H., Ishihama, A. and Igarashi, K. (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J. Biol. Chem. 279, 46008-46013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wortham, B.W., Oliveira, M.A., Patel, C.N. (2007). Polyamines in Bacteria: Pleiotropic Effects yet Specific Mechanisms. In: Perry, R.D., Fetherston, J.D. (eds) The Genus Yersinia. Advances In Experimental Medicine And Biology, vol 603. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72124-8_9

Download citation

Publish with us

Policies and ethics