Skip to main content

Selective Activation of Human Finger Muscles after Stroke or Amputation

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

Individuated finger movements of the human hand require selective activation of particular sets of muscles. Such selective activation is controlled primarily by the motor cortex via the corticospinal tract. Is this selectivity therefore lost when lesions damage the corticospinal tract? Or when the motor cortex reorganizes after amputation?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen P, Hagan PJ, Phillips CG, Powell TP (1975) Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon's hand. Proceedings of the Royal Society of London – Series B: Biological Sciences 188: 31–36.

    Article  CAS  Google Scholar 

  • Brasil-Neto JP, Cohen LG, Pascual-Leone A, Jabir FK, Wall RT, Hallett, M. (1992) Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology 42: 1302–1306.

    PubMed  CAS  Google Scholar 

  • Brasil-Neto JP, Valls-Sole J, Pascual-Leone A, Cammarota A, Amassian, VE, Cracco R, Maccabee P, Cracco J, Hallett M, Cohen LG (1993) Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain 116: 511–525.

    Article  PubMed  Google Scholar 

  • Bremner FD, Baker JR, Stephens JA (1991a) Correlation between the discharges of motor units recorded from the same and from different finger muscles in man. J Physiol (Lond ) 432: 355–380.

    CAS  Google Scholar 

  • Bremner FD, Baker JR, Stephens JA (1991b) Effect of task on the degree of synchronization of intrinsic hand muscle motor units in man. J Neurophysiol 66: 2072–2083.

    CAS  Google Scholar 

  • Bremner FD, Baker JR, Stephens JA (1991c) Variation in the degree of synchronization exhibited by motor units lying in different finger muscles in man. J Physiol (Lond ) 432: 381–399.

    CAS  Google Scholar 

  • Brunstrom S (1970) Movement Therapy in Hemiplegia: A Neurophysiological Approach. New York: Harper and Row.

    Google Scholar 

  • Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111: 761–773.

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG (1998) Mechanisms of cortical reorgani-zation in lower-limb amputees. J Neurosci 18: 3443–3450.

    PubMed  CAS  Google Scholar 

  • Cohen LG, Bandinelli S, Findley TW, Hallett M (1991) Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114: 615–627.

    Article  PubMed  Google Scholar 

  • Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain 112: 749–763.

    Article  PubMed  Google Scholar 

  • Datta AK, Farmer SF, Stephens JA (1991) Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions. J Physiol (Lond ) 432: 401–425.

    CAS  Google Scholar 

  • Dettmers C, Adler T, Rzanny R, Van Schayck R, Gaser C, Weiss T, Miltner WH, Bruckner L, Weiller C (2001) Increased excitability in the primary motor cortex and supplementary motor area in patients with phantom limb pain after upper limb amputation. Neurosci Lett 307: 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Dettmers C, Liepert J, Adler T, Rzanny R, Rijntjes M, Van Schayck R, Kaiser W, Brückner L, Weiller C (1999) Abnormal motor cortex organization contralateral to early upper limb amputation in humans. Neurosci Lett 263: 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Fisher CM (1982) Lacunar strokes and infarcts: a review. Neurology 32: 871–876.

    PubMed  CAS  Google Scholar 

  • Fisher CM, Curry HB (1965) Pure motor hemiplegia of vascular origin. Arch Neurol 13: 30–44.

    PubMed  CAS  Google Scholar 

  • Fleckenstein JL, Watumull D, Bertocci LA, Parkey RW, Peshock RM (1992) Finger-specific flexor recruitment in humans: depiction by exercise-enhanced MRI. J Appl Physiol 72: 1974–1977.

    PubMed  CAS  Google Scholar 

  • Giraux P, Sirigu A (2003) Illusory movements of the paralyzed limb restore motor cortex activity. Neuroimage 20 Suppl 1: S107–S111.

    Article  PubMed  Google Scholar 

  • Given JD, Dewald JP, Rymer WZ (1995) Joint dependent passive stiffness in paretic and contralateral limbs of spastic patients with hemiparetic stroke. J Neurol Neurosurg Psychiatry 59: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Irlbacher K, Meyer BU, Voss M, Brandt SA, Roricht S (2002) Spatial reorganization of cortical motor output maps of stump muscles in human upper-limb amputees. Neurosci Lett 321: 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Kamper DG, Rymer WZ (2000) Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve 23: 954–961.

    Article  PubMed  CAS  Google Scholar 

  • Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H (2001) Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 21: 3609–3618.

    PubMed  CAS  Google Scholar 

  • Keen DA, Fuglevand AJ (2003a) Common input to motor neurons innervating the same and different compartments of the human extensor digitorum muscle. J Neurophysiol.

    Google Scholar 

  • Keen DA, Fuglevand AJ (2003b) Role of intertendinous connections in distribution of force in the human extensor digitorum muscle. Muscle Nerve 28: 614–622.

    Article  Google Scholar 

  • Kilbreath SL, Gandevia SC (1994) Limited independent flexion of the thumb and fingers in human subjects. J Physiol 479: 487–497.

    PubMed  Google Scholar 

  • Kilbreath SL, Gorman RB, Raymond J, Gandevia SC (2002) Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus. J Physiol (Lond ) 543: 289–296.

    Article  CAS  Google Scholar 

  • Kooijman CM, Dijkstra PU, Geertzen JH, Elzinga A, van der Schans CP (2000) Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain 87: 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Lang CE, Schieber MH (2003) Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. J Neurophysiol 90: 1160–1170.

    Article  PubMed  Google Scholar 

  • Lang CE, Schieber MH (2004a) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol 92: 2802–2810.

    Article  Google Scholar 

  • Lang CE, Schieber MH (2004b) Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J Neurophysiol 91: 1722–1733.

    Article  Google Scholar 

  • Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Latash ML, Yue GH, Siemionow V, Sahgal V (2003) The effects of stroke and age on finger interaction in multi-finger force production tasks. Clin Neurophysiol 114: 1646–1655.

    Article  PubMed  Google Scholar 

  • Long C, Conrad PW, Hall EA, Furler SL (1970) Intrinsic-extrinsic muscle control of the hand in power grip and precision handling. An electromyographic study. Journal of Bone & Joint Surgery – American Volume 52: 853–867.

    Google Scholar 

  • Maier MA, Hepp-Reymond MC (1995a) EMG activation patterns during force production in precision grip. I. Contribution of 15 finger muscles to isometric force. Exp Brain Res 103: 108–122.

    Article  CAS  Google Scholar 

  • Maier MA, Hepp-Reymond MC (1995b) EMG activation patterns during force production in precision grip. II. Muscular synergies in the spatial and temporal domain. Exp Brain Res 103: 123–136.

    Article  CAS  Google Scholar 

  • McNulty PA, Macefield VG, Taylor JL, Hallett M (2002) Cortically evoked neural volleys to the human hand are increased during ischaemic block of the forearm. J Physiol 538: 279–288.

    Article  PubMed  CAS  Google Scholar 

  • ∗Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24: 1000–1019.

    Article  PubMed  CAS  Google Scholar 

  • O'Dwyer NJ, Ada L, Neilson PD (1996) Spasticity and muscle contracture following stroke. Brain 119 ( Pt 5): 1737–1749.

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Peris M, Tormos JM, Pascual APL, Catalá MD (1996) Reorganization of human cortical motor output maps following traumatic forearm amputation. Neuroreport 7: 2068–2070.

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Rasmussen T (1950) The Cerebral Cortex of Man. New York: MacMillan.

    Google Scholar 

  • Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. The D. O. Hebb lecture. Brain 121 ( Pt 9): 1603–1630.

    Article  PubMed  Google Scholar 

  • Ramachandran VS, Rogers-Ramachandran D (2000) Phantom limbs and neural plasticity. Arch Neurol 57: 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Reilly KT, Mercier C, Schieber MH, Sirigu A. (2006) Persistent hand motor commands in the amputees' brain. Brain 129: 2211–23.

    Article  PubMed  Google Scholar 

  • Reilly KT, Nordstrom MA, Schieber MH (2004) Short-term synchronization between motor units in different functional subdivisions of the human flexor digitorum profundus muscle. J Neurophysiol 92: 734–742.

    Article  PubMed  Google Scholar 

  • Reilly KT, Schieber MH (2003) Incomplete functional subdivision of the human multitendoned finger muscle flexor digitorum profundus: An electromyographic study. J Neurophysiol 90: 2560–2570.

    Article  PubMed  Google Scholar 

  • Roux FE, Lotterie JA, Cassol E, Lazorthes Y, Sol JC, Berry I (2003) Cortical areas involved in virtual movement of phantom limbs: comparison with normal subjects. Neurosurgery 53: 1342–1352.

    Article  PubMed  Google Scholar 

  • Röricht S, Meyer BU, Niehaus L, Brandt SA (1999) Long-term reorganization of motor cortex outputs after arm amputation. Neurology 53: 106–111.

    PubMed  Google Scholar 

  • ∗Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23: 393–415.

    Article  PubMed  CAS  Google Scholar 

  • Schieber MH (1991) Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J Neurophysiol 65: 1381–1391.

    PubMed  CAS  Google Scholar 

  • Schieber MH (1995) Muscular production of individuated finger movements: The roles of extrinsic finger muscles. J Neurosci 15: 284–297.

    PubMed  CAS  Google Scholar 

  • ∗Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86: 2125–2143.

    PubMed  CAS  Google Scholar 

  • Schieber MH, Deuel RK (1997) Primary motor cortex reorganization in a long-term monkey amputee. Somatosensory & Motor Research 14: 157–167.

    Article  CAS  Google Scholar 

  • ∗Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96: 2293–2300.

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ (2000) Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J Neurophysiol 83: 1469–1479.

    PubMed  CAS  Google Scholar 

  • Valero-Cuevas FJ, Towles JD, Hentz VR (2000) Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles. J Biomech 33: 1601–1609.

    Article  PubMed  CAS  Google Scholar 

  • Vattanasilp W, Ada L, Crosbie J (2000) Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. J Neurol Neurosurg Psychiatry 69: 34–39.

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85: 1–8.

    PubMed  CAS  Google Scholar 

  • Woolsey CN, Settlage PH, Meyer DR, Sencer W, Hamuy TP, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Pub Assoc Res Nerv Ment Dis 30: 238–264.

    CAS  Google Scholar 

  • Wu CWH, Kaas JH (1999) Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. J Neurosci 19: 7679–7697.

    PubMed  CAS  Google Scholar 

  • Wu CWH, Kaas JH (2000) Spinal cord atrophy and reorganization of motoneuron connections following long-standing limb loss in primates. Neuron 28: 967–978.

    Article  PubMed  CAS  Google Scholar 

  • Zackowski KM, Dromerick AW, Sahrmann SA, Thach WT, Bastian AJ (2004) How do strength, sensation, spasticity and joint individuation relate to the reaching deficits of people with chronic hemiparesis? Brain 127: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Corwell B, Cohen LG (1998) Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J Neurosci 18: 1115–1123.

    PubMed  CAS  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc H. Schieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schieber, M.H., Lang, C.E., Reilly, K.T., McNulty, P., Sirigu, A. (2009). Selective Activation of Human Finger Muscles after Stroke or Amputation. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_30

Download citation

Publish with us

Policies and ethics