Skip to main content

Multi-Finger Prehension: Control of a Redundant Mechanical System

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

The human hand has been a fascinating object of study for researchers in both biomechanics and motor control. Studies of human prehension have contributed significantly to the progress in addressing the famous problem of motor redundancy. After a brief review of the hand mechanics, we present results of recent studies that support a general view that the apparently redundant design of the hand is not a source of computational problems but a rich apparatus that allows performing a variety of tasks in a reliable and flexible way (the principle of abundance). Multi-digit synergies have been analyzed at two levels of a hypothetical hierarchy involved in the control of prehensile actions. At the upper level, forces and moments produced by the thumb and virtual finger (an imagined finger with a mechanical action equal to the combined mechanical action of all four fingers of the hand) co-vary to stabilize the gripping action and the orientation of the hand-held object. These results support the principle of superposition suggested earlier in robotics with respect to the control of artificial grippers. At the lower level of the hierarchy, forces and moments produced by individual fingers co-vary to stabilize the magnitude and direction of the force vector and the moment of force produced by the virtual finger. Adjustments to changes in task constraints (such as, for example, friction under individual digits) may be local and synergic. The latter reflect multi-digit prehension synergies and may be analyzed with the so-called chain effects: Sequences of relatively straightforward cause-effect links directly related to mechanical constraints leading to non-trivial strong co-variation between pairs of elemental variables. Analysis of grip force adjustments during motion of hand-held objects suggests that the central nervous system adjusts to gravitational and inertial loads differently. The human hand is a gold mine for researchers interested in the control of natural human movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov A, Frolov A, Massion J (1998) Axial synergies during human upper trunk bending. Exp Brain Res 118: 210–220.

    Article  PubMed  CAS  Google Scholar 

  • Aoki T, Niu X, Latash ML, Zatsiorsky VM (2006) Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Exp Brain Res 172: 425–438.

    Article  PubMed  Google Scholar 

  • Aoki T, Latash ML, Zatsiorsky VM (2007) Adjustments to local friction in multi-finger prehension. J Mot Behav 39: 276–290.

    Google Scholar 

  • Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodwin AW and Darian-Smith I, eds. Hand Function and the Neocortex. Berlin: Springer Verlag; pp. 111–129.

    Google Scholar 

  • Arimoto S, Tahara K, Yamaguchi M, Nguyen PTA, Han HY (2001) Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica 19: 21–28.

    Article  Google Scholar 

  • Bennett KMB and Castiello U, eds (1994) Insights into the Reach to Grasp Movement. Amsterdam: Elsevier Science.

    Google Scholar 

  • ∗Bernstein NA (1967) The co-ordination and regulation of movements. Oxford: Pergamon Press.

    Google Scholar 

  • Buchanan TS, Almdale DP, Lewis JL, Rymer WZ (1986) Characteristics of synergic relations during isometric contractions of human elbow muscles. J Neurophysiol 56: 1225–1241.

    PubMed  CAS  Google Scholar 

  • Buchanan TS, Rovai GP, Rymer WZ (1989) Strategies for muscle activation during isometric torque generation at the human elbow. J Neurophysiol 62: 1201–1212.

    PubMed  CAS  Google Scholar 

  • Budgeon MK (2007) Prehension synergies during finger manipulation. Unpublished Master Thesis. The Pennsylvania State University.

    Google Scholar 

  • Burstedt MK, Flanagan JR, Johansson RS (1999) Control of grasp stability in humans under different frictional conditions during multidigit manipulation. J Neurophysiol 82: 2393–2405.

    PubMed  CAS  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nature Rev Neurosci 6: 720–736.

    Google Scholar 

  • Cesari P, Newell KM (1999) The scaling of human grip configurations. J Exp Psychol Hum Percept Perform 25: 927–935.

    Article  PubMed  CAS  Google Scholar 

  • Cole KJ, Abbs JH (1987) . Kinematic and electromyographic responses to perturbation of a rapid grasp. J Neurophysiol 57: 1498–1510.

    PubMed  CAS  Google Scholar 

  • Cole KJ, Abbs JH (1988) Grip force adjustments evoked by load force perturbations of a grasped object. J Neurophysiol 60: 1513–1522

    PubMed  CAS  Google Scholar 

  • Cutkosky MR, Howe RD (1990) Human grasp choice and robotic grasp analysis. Venkataraman T and Iberall T, eds. Dextrous Robot Hands. New York: Springer Verlag, pp. 5–31.

    Google Scholar 

  • Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88: 91–98.

    Article  PubMed  Google Scholar 

  • Edin BB, Westling G, Johansson RS (1992) Independent control of human finger-tip forces at individual digits during precision lifting. J Physiol 450: 547–564

    PubMed  CAS  Google Scholar 

  • Einstein A (1907) On the relativity principle and the conclusions drawn from it. Yearbook of radiactivity and electronics (in German). Cited after A. Einstein, L. Infeld. The evolution of physics: from early concepts to relativity and quanta. New York: Simon and Schuster; 1938.

    Google Scholar 

  • Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Wing AM (1995) The stability of precision grip forces during cyclic arm movements with a hand-held load. Exp Brain Res 105: 455–464.

    PubMed  CAS  Google Scholar 

  • Flanders, M, Soechting JF (1990) Arm muscle activation for static forces in three-dimensional space. J Neurophysiol 64: 1818–1837.

    PubMed  CAS  Google Scholar 

  • Gao F; Latash ML, and Zatsiorsky VM (2004) Neural network modeling supports a theory on the hierarchical control of prehension. Neural Comput Appl 13: 352–359.

    Article  Google Scholar 

  • Gao F, Latash ML, Zatsiorsky VM (2005a) Control of finger force direction in the flexion-extension plane. Exp Brain Res 161: 307–315.

    Article  Google Scholar 

  • Gao F, Latash ML, Zatsiorsky VM (2005b) Internal forces during object manipulation. Exp Brain Res 165: 69–83.

    Article  Google Scholar 

  • Gelfand IM, Latash ML (2002) On the problem of adequate language in biology. In: Latash ML (Ed.) Progress in Motor Control. vol. 2: Structure-Function Relations in Voluntary Movement. p. 209–228, Human Kinetics: Urbana, IL.

    Google Scholar 

  • ∗Gelfand IM, Tsetlin ML (1966) On mathematical modeling of the mechanisms of the central nervous system. In: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (Eds.) Models of the structural-functional organization of certain biological systems, pp. 9–26, Nauka: Moscow (1966) (in Russian, a translation is available in 1971 edition by MIT Press: Cambridge MA.)

    Google Scholar 

  • Goodman SR, Latash ML (2006) Feedforward control of a redundant motor system. Biol Cybern 95: 271–280.

    Article  PubMed  Google Scholar 

  • Hershkovitz M, Tasch U, Teboulle M (1995) Toward a formulation of the human grasping quality sense. J Robot Syst 19: 249–256.

    Article  Google Scholar 

  • Hershkovitz M, Teboulle M (1998) Sensitivity analysis for a class of robotic grasping quality functionals. Robotica 16: 227–235.

    Article  Google Scholar 

  • Hughlings Jackson J (1889) On the comparative study of disease of the nervous system. Brit Med J 17: 355–362, Aug.

    Article  Google Scholar 

  • Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25: 7238–7253.

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556: 267–82.

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56: 550–564.

    Article  PubMed  CAS  Google Scholar 

  • Kerr JR, Roth B (1986) Analysis of multifingered hands. J Robot Res 4: 3–17.

    Article  Google Scholar 

  • Kilbreath SL, Gandevia SC (1994) Limited independent flexion of the thumb and fingers in human subjects. J Physiol 479: 487–497.

    PubMed  Google Scholar 

  • Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2006) Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. Exp Brain Res 174: 604–612.

    Article  PubMed  Google Scholar 

  • Kinoshita H, Kawai S, Ikuta K, Teraoka T (1996) Individual finger forces acting on a grasped object during shaking actions. Ergonomics 39: 243–256.

    Article  PubMed  CAS  Google Scholar 

  • Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152: 281–292.

    Article  PubMed  Google Scholar 

  • Kuo AD (1994) A mechanical analysis of force distribution between redundant, multiple degree-of-freedom actuators in the human: Implications for the central nervous system. Hum Move Sci 13: 635–663.

    Article  Google Scholar 

  • Lang CE, Schieber MH (2003) Differential impairment of individuated finger movements in humans after damage to the motor cortex or the corticospinal tract. J Neurophysiol 90: 1160–1170.

    Article  PubMed  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G (2001) Structure of motor variability in marginally redundant multi-finger force production tasks. Exp Brain Res 141: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • ∗Latash ML, Scholz JP, Schöner G (2002a) Motor control strategies revealed in the structure of motor variability. Exer Sport Sci Rev 30: 26–31.

    Article  Google Scholar 

  • Latash ML, Scholz JF, Danion F, Schöner G (2002b) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146: 412–432.

    Google Scholar 

  • Latash ML, Shim JK, Gao F, Zatsiorsky VM (2004) Rotational equilibrium during multi-digit pressing and prehension. Motor Control 8: 392–404.

    PubMed  Google Scholar 

  • Latash ML, Shim JK, Smilga AV, Zatsiorsky VM (2005) A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biol Cybern 92: 186–191.

    Article  PubMed  Google Scholar 

  • Leijnse JN, Snijders CJ, Bonte JE, Landsmeer JM, Kalker JJ, Van der Meulen JC, Sonneveld GJ, Hovius SE (1993) The hand of the musician: the kinematics of the bidigital finger system with anatomical restrictions. J Biomech 26: 1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Li Z-M, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119: 276–286.

    Article  PubMed  CAS  Google Scholar 

  • Loeb E, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie CL, Iberall T (1994) The grasping hand. Amsterdam; New York: North-Holland.

    Google Scholar 

  • Murray RM, Li Z, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton.

    Google Scholar 

  • Nakazawa N, Ikeura R, Inooka H (2000) Characteristics of human fingertips in the shearing direction. Biol Cybern. 8: 207–214.

    Article  Google Scholar 

  • Newell KM, Broderick MP, Deutsch KM, Slifkin AB. (2003) Task goals and change in dynamical degrees of freedom with motor learning. J Exp Psychol: Hum Percept Perform 29: 379–387.

    Article  Google Scholar 

  • Nichols TR (1994) A biomechanical perspective on spinal mechanisms of coordinated muscular action: an architecture principle. Acta Anat (Basel) 151: 1–13.

    Article  CAS  Google Scholar 

  • Ohtsuki T (1981) Inhibition of individual fingers during grip strength exertion. Ergonomics 24: 21–36

    Article  PubMed  CAS  Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2004a) Prehension synergies during nonvertical grasping, I: experimental observations. Biol Cybern 91: 148–158.

    Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2004b) Prehension synergies during nonvertical grasping, II: Modeling and optimization. Biol Cybern 91: 231–242.

    Article  Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2004c) Tangential load sharing among fingers during prehension. Ergonomics 47: 876–889.

    Article  Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2005) Viscoelastic response of the finger pad to incremental tangential displacements. J Biomech 38: 1441–1449.

    Article  PubMed  Google Scholar 

  • Pataky TC, Latash ML, Zatsiorsky VM (2007) Finger interaction during radial and ulnar deviation: Experimental data and neural network modeling. Exp Brain Res 179: 301–312.

    Google Scholar 

  • Prilutsky BI (2000) Coordination of two- and one-joint muscles: functional consequences and implications for motor control. Motor Control 4: 1–44.

    PubMed  CAS  Google Scholar 

  • Quaney BM, Cole KJ (2004) Distributing vertical forces between the digits during gripping and lifting: the effects of rotating the hand versus rotating the object. Exp Brain Res 155: 145–155

    Article  PubMed  Google Scholar 

  • Robertson EM (2000) Neural features of the reach and grasp. Motor Control 4: 117–123.

    PubMed  CAS  Google Scholar 

  • Salisbury JK, Craig JJ. (1982) Articulated hands: force control and kinematic issues. Int J Robot Res 1: 4–17.

    Article  Google Scholar 

  • Saltiel P, Wyler-Duda K, D'Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol 85: 605–619.

    PubMed  CAS  Google Scholar 

  • Sanger TD (2000) Human arm movements described by a low-dimensional superposition of principal components. J Neurosci 20: 1066–1072.

    PubMed  CAS  Google Scholar 

  • Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133: 457–467.

    Article  PubMed  CAS  Google Scholar 

  • ∗Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96: 2293–2300.

    Article  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126: 289–306.

    Article  PubMed  CAS  Google Scholar 

  • Scholz JP, Danion F, Latash ML, Schöner G (2002) Understanding finger coordination through analysis of the structure of force variability. Biol Cybern 86: 29–39.

    Article  PubMed  Google Scholar 

  • Serina ER, Mote CD Jr, Rempel D (1997) Force response of the fingertip pulp to repeated compression—effects of loading rate, loading angle and anthropometry. J Biomech 30: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Serina ER, Mockensturm E, Mote CD Jr, Rempel D (1998)A structural model of the forced compression of the fingertip pulp. J Biomech. 31: 639–646.

    Article  PubMed  CAS  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2003) Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance. Exp Brain Res 152: 173–184.

    Article  PubMed  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2004a) Finger coordination during moment production on a mechanically fixed object. Exp Brain Res 157: 457–467.

    Article  Google Scholar 

  • Shim JK, Lay B, Zatsiorsky VM, Latash ML (2004b) Age-related changes in finger coordination in static prehension tasks. J Appl Physiol 97: 213–224.

    Article  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2005a) Prehension synergies in three dimensions. J Neurophysiol 93: 766–776.

    Article  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2005b) Prehension synergies: trial-to-trial variability and principle of superposition during static prehension in three dimensions. J Neurophysiol 93: 3649–3658.

    Article  Google Scholar 

  • Shim JK, Huang J, Latash ML, Zatsiorsky VM (2007) Multi-digit maximal voluntary torque production on a circular object. Ergonomics 50: 660–675.

    Google Scholar 

  • Smith MA, Soechting JF (2005) Modulation of grasping forces during object transport. J Neurophysiol 93: 137–145.

    Article  PubMed  Google Scholar 

  • Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93: 609–613.

    Article  PubMed  Google Scholar 

  • Tresch MC, Cheung VC, d'Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95: 2199–212.

    Article  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5: 1226–1235.

    Article  PubMed  CAS  Google Scholar 

  • ∗Turvey MT (1990) Coordination. Amer Psychol 45: 938–953.

    Article  CAS  Google Scholar 

  • Vaillancourt DE, Slifkin AB, Newell KM (2002) Inter-digit individuation and force variability in the precision prip of young, elderly, and Parkinson's disease participants. Motor Control 6: 113–28.

    PubMed  Google Scholar 

  • Valero-Cuevas FJ, Zajac FE, Burgar CG (1998) Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J Biomech 31, 693–703.

    Article  PubMed  CAS  Google Scholar 

  • Valero-Cuevas FJ, Towles JD, Hentz VR (2000) Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles. J Biomech 33: 1601–1609.

    Article  PubMed  CAS  Google Scholar 

  • Vereijken B, van Emmerick REA, Whiting HTA, Newell KM (1992) Free(z)ing degrees of freedom in skill acquisition. J Mot Behav 24: 133–142.

    Article  Google Scholar 

  • Westling G, Johansson RS (1984) Factors influencing the force control during precision grip. Exp Brain Res 53: 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T(1990) Foundations in Robotics. Cambridge: MIT Press.

    Google Scholar 

  • Yoshikawa T, Nagai K (1991) Manipulating and grasping forces in manipulation by multifingered robot hands. IEEE Trans Robot Automat 7: 67–77.

    Article  Google Scholar 

  • Zatsiorsky VM, Li Z-M, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Gregory RW, Latash ML (2002a) Force and torque production in static multifinger prehension: biomechanics and control. I. Biomechanics. Biol Cybern 87: 50–57.

    Article  Google Scholar 

  • Zatsiorsky VM, Gregory RW, Latash ML (2002b) Force and torque production in static multifinger prehension: biomechanics and control. II. Control. Biol Cybern 87: 40–49.

    Article  Google Scholar 

  • ∗Zatsiorsky VM, Latash ML (2004) Prehension synergies. Exerc Sport Sci Rev 32: 75–80.

    Article  PubMed  Google Scholar 

  • ∗Zatsiorsky VM, Latash ML, Gao F, Shim JK (2004) The principle of superposition in human prehension. Robotica 22: 231–234.

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2003) Prehension synergies: Effects of object geometry and prescribed torques. Exp Brain Res 148: 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2005) Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Exp Brain Res 162: 300–308

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gao F, Latash ML (2006) Prehension stability: Experiments with expanding and contracting handle. J Neurophysiol 95: 2513–2529.

    Article  PubMed  Google Scholar 

  • Zhang W, Zatsiorsky VM, Latash ML (2006) Accurate production of time-varying patterns of the moment of force in multi-finger tasks. Exp Brain Res 175: 68–82.

    Article  PubMed  Google Scholar 

  • Zhang W, Zatsiorsky VM, Latash ML (2007) Finger synergies during multi-finger cyclic production of moment of force. Exp Brain Res 177: 243–254.

    Article  PubMed  Google Scholar 

  • Zuo BR, Qian WH (2000) A general dynamic force distribution algorithm for multifingered grasping. IEEE Trans Syst Man Cybern Part B- Cybernetics 30: 185–192.

    Article  CAS  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Latash, M.L., Zatsiorsky, V.M. (2009). Multi-Finger Prehension: Control of a Redundant Mechanical System. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_32

Download citation

Publish with us

Policies and ethics