Skip to main content

Tactile Feedback in Surgical Robotics

  • Chapter
  • First Online:
Surgical Robotics

Abstract

While commercial surgical robotic systems have provided improvements to minimally invasive surgery, such as 3D stereoscopic visualization, improved range of motion, and increased precision, they have been designed with only limited haptic feedback. A number of robotic surgery systems are currently under development with integrated kinesthetic feedback systems, providing a sense of resistance to the hands or arms of the user. However, the application of tactile feedback systems has been limited to date. The challenges and potential benefits associated with the development of tactile feedback systems to surgical robotics are discussed. A tactile feedback system, featuring piezoresistive force sensors and pneumatic silicone-based balloon actuators, is presented. Initial tests with the system mounted on a commercial robotic surgical system have indicated that tactile feedback may potentially reduce grip forces applied to tissues and sutures during robotic surgery, while also providing high spatial and tactile resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burdea, G.C.: Force and Touch Feedback for Virtual Reality. pp. 3–4. Wiley, New York ((1996)).

    Google Scholar 

  2. Lum, M.J.H., Friedman, D.C.W., King, H.H.I., Donlin, R., Sankaranarayanan, G.,Broderick, T.J., Sinanan, M.N., Rosen, J., Hannaford, B.: Teleoperation of a surgical robot via airborne wireless radio and transatlantic internet links. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics. Springer, Berlin (2008)

    Google Scholar 

  3. Madhani, A.J., Niemeyer, G., Salisbury, J.K.: The black falcon: a teleoperated surgical instrument for minimally invasive surgery. In: Proceedings of Intelligent Robots and Systems (1998)

    Google Scholar 

  4. Taylor, R., Jensen, P., Whitcomb, L., Barnes, A., Kumar, R., Stoianovici, D., Gupta, P., Wang, Z., deJuan, E., Kavoussi, L.: A steady-hand robotic system for microsurgical augmentation. Int. J. Robot. Res. 18, 1201–1210 (1999)

    Article  Google Scholar 

  5. Cavusoglu, M.C., Tendick, F., Cohn, M., Sastry, S.S.: A Laparoscopic Telesurgical Workstation. IEEE T. Robo. Autom. 15(4), 728–739 (1999)

    Article  Google Scholar 

  6. Das, H., Zak, H., Johnson, J., Crouch, J., Frambach, D.: Evaluation of a telerobotic system to assist surgeons in microsurgery. Comput. Aided Surg. 4(1), 15–25 (1999)

    Article  Google Scholar 

  7. McBeth, P., Louw, D., Rizun, P., Sutherland, G.: Robotics in neurosurgery. Am. J. Surg. 188(4), 68–75 (2004)

    Article  Google Scholar 

  8. Kitagawa, M., Dokko, D., Okamura, A., Yuh, D.D.: Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J. Thorac. Cardiovasc. Surg. 129(1), 151–158 (2005)

    Article  Google Scholar 

  9. Kontarinis, D.A., Son, J.S., Peine, W., Howe, R.D.: A tactile shape sensing and display system for teleoperated manipulation. Proc. IEEE Int. Conf. Robot. Autom. 1, 641–646 (1995)

    Google Scholar 

  10. Moy, G.: Bidigital teletaction system design and performance. Ph.D. Dissertation,University of California at Berkeley 2002

    Google Scholar 

  11. Hayward, V., Cruz-Hernandez, M.: Tactile display device using distributed lateral skin stretch. In: Proceedings Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium, pp. 1309–1314 (2000)

    Google Scholar 

  12. Fukuda, T., Morita, H., Arai, F., Ishihara, H., Matsuura, H.: Microresonator using electromagnetic actuator for tactile display. In: Proceedings 1997 International Symposium on Micromechatronics and Human Science, pp. 143–148 (1997)

    Google Scholar 

  13. Wagner, C.R., Lederman, S.J., Howe, R.D.: A tactile shape display using RC servomotors. In: Proceedings HAPTICS, pp. 354–355 (2002)

    Google Scholar 

  14. Moy, G., Wagner, C., Fearing, R.S.: A compliant tactile display for teletaction. Proc. IEEE Int. Conf. Robot. Autom. 4, 3409–3415 (2000)

    Google Scholar 

  15. Caldwell, D.G., Tsagarakis, N., Giesler, C.: An integrated tactile/shear feedback array for stimulation of finger mechanoreceptor. Proc. IEEE Int. Conf. Robot. Autom. 1, 287–292 (1999)

    Google Scholar 

  16. Okamura, A.M.: Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 19, 102–107 ( 2009)

    Article  Google Scholar 

  17. van der Meijden, O.A.J., Schijven, M.P.: The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg. Endosc. 23, 1180–1190 (2009)

    Article  Google Scholar 

  18. Macefield, V.G., Johansson, R.S.: Control of grip force during re-straint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Exp. Brain Res. 108, 172–184 (1996)

    Google Scholar 

  19. Johansson, R.S., Hager, C., Backstrom, L.: Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp. Brain Res. 89, 204–213 (1992)

    Article  Google Scholar 

  20. Macefield, V.G., Hager-Ross, C., Johansson, R.S.: Control of grip force during restraint of an object held between finger and thumb: responses of cu-taneous afferents from the digits. Exp. Brain Res. 108, 155–171 (1996)

    Google Scholar 

  21. Goodwin, A.W., Macefield, V.G., Bisley, J.W.: Encoding of object curvature by tactile afferents from human fingers. J. Neurophysiol. 78, 2881–2888 (1997)

    Google Scholar 

  22. Schiff, W., Foulke, E.: Tactual Perception: A Sourcebook. Cambridge University Press, Cambridge, UK (1982)

    Google Scholar 

  23. Tiresias: (2008) Braille cell dimensions. http://www.tiresias.org/reports/braile_cell.htm

  24. Phillips, J.R., Johansson, R.S., Johnson, K.O.: Representation of Braille characters in human nerve fibers. Exp. Brain Res. 81, 589–592 (1990)

    Article  Google Scholar 

  25. Brown, J.D., Rosen, J., Chang, L., Sinanan, M.N., Hannaford, B.: Quantifying surgeon grasping mechanics in laparoscopy using the blue DRAGON system. Stud. Health Technol. Inform. 98, 34–36 (2004)

    Google Scholar 

  26. Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner, S.E., Smith, M.K.: Transatlantic robot-assisted telesurgery. Nature 413(6854), 379–380 (2001)

    Article  Google Scholar 

  27. Fukuda, T., Morita, H., Arai, F., Ishihara, H., Matsuura, H.: Micro resonator using electromagnetic actuator for tactile display. In: Proceedings 1997 International Symposium on Micromechatronics and Human Science, pp. 143–148 (1997)

    Google Scholar 

  28. Caldwell, D.G., Tsagarakis, N., Giesler, C.: An integrated tactile/shear feedback array for stimulation of finger mechanoreceptor. Proc. IEEE Int. Conf. Robot. Autom. 1, 287–292 (1999)

    Google Scholar 

  29. Shinohara, M., Shimizu, Y., Mochizuki, A.: Three-dimensional tactile display for the blind. IEEE Trans. Neural Syst. Rehabil. Eng. 6(3), 249–256 (1998)

    Google Scholar 

  30. Kaczmarek, K.A., Webster, J.G., Bach-y-Rita, P., Tompkins, W.J.: Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38(1), 1–16 (1991)

    Article  Google Scholar 

  31. Summers, I.R., Chanter, C.M.: A broadband tactile array on the fingertip. J. Acoust. Soc. Am. 112, 2118–2126 (2002)

    Article  Google Scholar 

  32. Haga, Y., Mizushima, M., Matsunaga, T., Esashi, M.: Medical and welfare applications of shape memory alloy microcoil actuators. Smart Mater. Struct. 14(5), S266–S272 (2005)

    Article  Google Scholar 

  33. Howe, R.D.Kontarinis, D.A. Peine, W.J.: Shape memory alloy actuator controller design for tactile displays. In: Proceedings of the 34th IEEE Conference on Decision and Control, vol. 4, pp. 3540–3544 (1995)

    Google Scholar 

  34. Taylor, P.M., Hosseini-Sianaki, A., Varley, C.J.: An electrorheological fluid-based tactile array for virtual environments. Proc. IEEE Int. Conf. Robot. Autom. 1, 18–23 (1996)

    Google Scholar 

  35. Bicchi, A., Scilingo, E.P., Sgambelluri, N., De Rossi, D.: Haptic interfaces based on magneto-rheological fluids. In: Proceedings of Eurohaptics, pp. 6–11 (2002)

    Google Scholar 

  36. Cohn, M.B., Lam, M., Fearing, R.S.: Tactile feedback for teleoperation. SPIE Telemanipulator Technol. 1833, 240–255 (1992)

    Google Scholar 

  37. Asamura, N., Yokoyama, N., Shinoda, H.: Selectively stimulating skin receptors for tactile display. IEEE Comput Graph. Appl. 18(6), 32–37 (1998)

    Article  Google Scholar 

  38. Sato, K., Igarashi, E., Kimura, M.: Development of non-constrained master arm with tactile feedback device. In: ICAR, Fifth International Conference on Advanced Robotics ‘Robots in Unstructured Environments’, pp. 334–338 (1991)

    Google Scholar 

  39. Moy, G., Wagner, C., Fearing, R.S.: A Compliant Tactile Display for Teletaction. In: ICRA 2000 IEEE International Conference on Robotic Automation, pp. 3409–3415 (2000)

    Google Scholar 

  40. Rogers, C.H.: Choice of stimulator frequency for tactile arrays. IEEE Trans. Man Mach. Syst. MMS-11, 5–11 (1970)

    Article  Google Scholar 

  41. Phillips, J.R., Johnson, K.O.: Neural Mechanisms of scanned and stationary touch. J. Acoust. Soc. Am. 77, 220–224 (1985)

    Article  Google Scholar 

  42. Petzold, B., Zaeh, M.F., Faerber, B., Deml, B., Egermeier, H., Schilp, J., Clarke, S.: A Study on Visual, Auditory, and Haptic Feedback for Assembly Tasks. Presence 13(1), 16–21 (2004)

    Article  Google Scholar 

  43. King, C.H., Franco, M., Culjat, M.O., Bisley, J.W., Dutson, E., Grundfest, W.S.: Fabrication and characterization of a balloon actuator array for haptic feedback in robotic surgery. ASME J. Medical Devices 2, 041066-1-041066-7 (2008)

    Google Scholar 

  44. Grosjean, C., Lee, G.B., Hong, W., Tai, Y.C., Ho, C.M.: Micro Balloon Actuators for Aerodynamic Control. In: Proceedings of IEEE Micro Electro Mechanical Systems, pp. 166–171 (1998)

    Google Scholar 

  45. Yuan, G., Wu, X., Yoon, Y.K., Allen, M.G.: Kinematically-Stabilized Microbubble Actuator Arrays, Micro Electro Mechanical Systems. MEMS 2005. 18th IEEE International Conference on 30 Jan.-3 Feb. 2005, pp. 411–414 (2005)

    Google Scholar 

  46. Moy, G., Wagner, C., Fearing, R.S.: A compliant tactile display for teletaction. In: ICRA 2000 IEEE Int.Conf. Rob. Automat, pp. 3409–3415 (2000)

    Google Scholar 

  47. Brown, J.D., Rosen, J., Kim, Y.S., Chang, L., Sinanan, M.N., Hannaford, B.: In-vivo and in-situ compressive properties of porcine abdominal soft tissues. Stud. Health Technol. Inform. 94, 26–32 (2003)

    Google Scholar 

  48. Okamura, A., Simone, C., O’Leary, M.: Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 51(10), 1707–1715.( 2004).

    Article  Google Scholar 

  49. Gray, B.L., Fearing, R.S.: A surface micromahined microtactile sensor array. IEEE Int. Conf. Robot. Autom. 1, 1–6 (1996)

    Google Scholar 

  50. Howe, R.D., Peine, W.J., Kontarinis, D.A., Son, J.S.: Remote palpation technology for surgical applications. IEEE Eng. Med. Biol. Mag. 14(3), 318–23 (1995)

    Article  Google Scholar 

  51. Sato, N., Heginbotham, W.B., Pugh, A.: A method for three dimensional part identification by tactile transducer. Proc. 7th Int. Symp. Indust. Robots 26(5), 311–317 (1987)

    Google Scholar 

  52. Luo, R.C., Wang, F., Liu, Y.: An imaging tactile sensor with magnetostrictive transduction. Robot Sensors: Tactile Non-Vision 2, 199–205 (1986)

    Google Scholar 

  53. Begej, S.: Planar and finger-shaped optical tactile sensors for roboticapplications. IEEE J. Robot. Autom. 4(5), 472–484 (1988)

    Article  Google Scholar 

  54. Dargahi, J., Parameswaran, M., Payandeh, S.: A micromachined piezoelectric tactile sensor for an endoscopicgrasper-theory, fabrication and experiments. J. Microelectromech. Syst. 9(3), 329–335 (2000)

    Article  Google Scholar 

  55. Krishna, G.M., Rajanna, K.: Tactile sensor based on piezoelectric resonance. IEEE Sens. J. 4(5), 691–697 (2004)

    Article  Google Scholar 

  56. Beebe, D.J., Hsieh, A.S., Denton, D.D., Radwin, R.G.: A silicon force sensor for robotics and medicine. Sens. Actuators 50, 55–65 (1995)

    Article  Google Scholar 

  57. Shinoda, H., Ando, S.: A tactile sensor with 5-D deformation sensing element. IEEE Int. Conf. Robot. Autom. 1, 7–12 (1996)

    Google Scholar 

  58. Matsumoto, S., Ooshima, R., Kobayashi, K., Kawabe, N., Shiraishi, T., Mizuno, Y., Suzuki, H., Umemoto, S.: A tactile sensor for laparoscopic cholecystectomy. Surg. Endo. 11(9), 939–941 (1997)

    Article  Google Scholar 

  59. Russell, R.A.: Using tactile whiskers to measure surface contours. IEEE Int. Conf. Robot. Autom. 1, 1295–1299 (1992)

    Article  Google Scholar 

  60. Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Rob. Autom. 16, 496–504 (2000)

    Article  Google Scholar 

  61. Kattavenos, N., Lawrenson, B., Frank, T.G., Pridham, M.S., Keatch, R.P., Cuschieri, A.: Force-sensitive tactile sensor for minimal access surgery. Minim. Invasive Ther. Allied Technol. 1, 42–46 (2004)

    Article  Google Scholar 

  62. Schostek, S., Ho, N., Kalanovic, D., Schurr, M.O.: Artificial tactile sensing in minimally invasive surgery – a new technical approach. Minim. Invasive Ther. Allied Technol. 15(5), 296–304 (2006)

    Article  Google Scholar 

  63. Mirbagheri, A., Dargahi, J., Narajian, S., Ghomshe, F.T.: Design, Fabrication, and Testing of a Membrane Piezoelectric Tactile Sensor with Four Sensing Elements. Am. J. Appl. Sci. 4(9), 645–652 (2007)

    Article  Google Scholar 

  64. King, C.H., Franco, M.L., Culjat, M.O., Higa, A.T., Bisley, J.W., Dutson, E., Grundfest, W.S.: Fabrication and characterization of a balloon actuator array for haptic feedback in robotic surgery. ASME J. Med. Devices 2, 041006-1-041006-7 (2008)

    Google Scholar 

  65. King, C.H., Culjat, M.O., Franco, M.L., Bisley, J.W., Dutson, E., Grundfest, W.S.: Optimization of pneumatic balloon tactile display for robotic surgery based on human perception. IEEE Trans. Biomed. Eng. 55(11), 2593–2600 (2008)

    Article  Google Scholar 

  66. Culjat, M.O., King, C.H., Franco, M.L., Lewis, C.E., Bisley, J.W., Dutson, E.P., Grundfest, W.S.: A Tactile feedback system for robotic surgery. Proc. IEEE Eng. Med. Biol. Soc. 1, 1930–1934 (2008)

    Google Scholar 

  67. King, C.H., Culjat, M.O., Franco, M.L., Bisley, J.W., Carman, G.P., Dutson, E.P., Grundfest, W.S.: A multi-element tactile feedback system for robot-assisted minimally invasive surgery. IEEE Trans. Haptics 2(1), 52–56 (2009)

    Article  Google Scholar 

  68. Brown, J.D., Rosen, J., Chang, L., Sinanan, M.N., Hannaford, B.: Quantifying surgeon grasping mechanics in laparoscopy using the blue DRAGON system. Stud. Health Technol. Inform. 98, 34–36 (2004)

    Google Scholar 

  69. Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner, S.E., Smith, M.K.: Transatlantic robot-assisted telesurgery. Nature 413(6854), 379–380 (2001)

    Article  Google Scholar 

  70. King, C.H., Culjat, M.O., Franco, M.L., Lewis, C.E., Dutson, E.P., Grundfest, W.S., Bisley, J.W.: Tactile feedback induces reduced grasping force in robotic surgery. IEEE Trans. Haptics (2009)

    Google Scholar 

  71. Franco, M.L., King, C.H., Culjat, M.O., Lewis, C.E., Bisley, J.W., Holmes, E.C., Grundfest, W.S., Dutson, E.P.: An integrated pneumatic tactile feedback actuator array for robotic surgery. Int. J. Med. Robot. and Comput. Assist. Surg. 5(1), 13–19 (2009)

    Article  Google Scholar 

  72. Wottawa, C., Fan, R.E., Lewis, C.E., Jordan, B., Culjat, M.O., Grundfest, W.S., Dutson, E.P.: Laparoscopic grasper with integrated tactile feedback system, Proceedings of the 2009 ICME/IEEE International Conference in Complex Medical Engineering. 9–11 April (2009), Tempe, AZ, 1–5 (2009)

    Google Scholar 

  73. Fan, R.E., Feinman, A., Wottawa, C., King, C.H., Franco, M.L., Dutson, E.P., Grundfest, W.S., Culjat, M.O.: Characterization of a pneumatic balloon actuator for use in refreshable Braille displays. Stud. Health Technol. Inform. 142, 94–96 (2009)

    Google Scholar 

  74. Fan, R.E., Culjat, M.O., King, C.H., Franco, M.L., Boryk, R., Bisley, J.W., Dutson, E., Grundfest, W.S.: A haptic feedback system for lower-limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 16(3), 270–277 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. E. Carmack Holmes and Mrs. Cheryl Hein for their support, and Mr. Miguel Franco, Ms. Adrienne Higa, and Dr. Catherine Lewis for their hard work and dedication to this project. The authors most gratefully appreciate funding provided for this work by the Telemedicine and Advanced Technology Research Center (TATRC)/Department of Defense under award number W81XWH-05-2-0024. Additional funding for James W. Bisley is provided by an Alfred P. Sloan Research Fellowship and a Klingenstein Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin O. Culjat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Culjat, M.O. et al. (2011). Tactile Feedback in Surgical Robotics. In: Rosen, J., Hannaford, B., Satava, R. (eds) Surgical Robotics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1126-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1126-1_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1125-4

  • Online ISBN: 978-1-4419-1126-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics