Skip to main content

Antioxidant Properties of Quercetin

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXII

Abstract

Quercetin, a plant-derived aglycone form of flavonoid glycosides, has been used as a nutritional supplement and may be beneficial against a variety of diseases, including cancer. We examined the antioxidant properties of quercetin. The reduction potential of quercetin was measured at various pH values using voltammetric methods, and its total antioxidant capacity (TAC) was measured using the phosphomolybdenum method. The effect of quercetin on production of reactive oxygen species (ROS) and nitric oxide (NO) in LPS-stimulated human THP-1 acute monocytic leukemia cells was determined by flow cytometry using CM-H2DCFDA dye. The results were compared with curcumin, a natural product exhibiting a similar range of reported health benefits. Results: 1) Quercetin has a higher reduction potential compared with curcumin at three different pH settings and is comparable to Trolox at pH 7-9.5; 2) its TAC is 3.5 fold higher than curcumin; 3) it reduced LPS-induced ROS to near normal levels; 4) it reduced LPS-induced NO production. These data provide a physico-chemical basis for comparing antioxidants, with potential benefits individually or in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neuhouser ML (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50(1):1-7

    Article  PubMed  CAS  Google Scholar 

  2. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2): 315-325

    Article  PubMed  CAS  Google Scholar 

  3. Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839-4854

    Article  PubMed  CAS  Google Scholar 

  4. Labinskyy N, Csiszar A, Veress G, et al (2006) Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 13:989-996.

    Article  PubMed  CAS  Google Scholar 

  5. Yang JY, Della-Fera MA, Rayalam S, et al (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82(19-20):1032-1039

    Article  PubMed  CAS  Google Scholar 

  6. Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Med Chem 6:945-951

    CAS  Google Scholar 

  7. Teixeira S (2002) Bioflavonoids: proanthocyanidins and quercetin and their potential roles in treating musculoskeletal conditions. J Orthop Sports Phys Ther 32(7):357-363.

    PubMed  Google Scholar 

  8. García-Mediavilla V, Crespo I, Collado PS, et al (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol 557(2-3):221-229

    Article  PubMed  Google Scholar 

  9. Karbarz M, Malyszko J (2008) Voltammetric behavior of trolox in methanol and ethanol solutions. Electroanalysis 20(17):1884-1890

    Article  CAS  Google Scholar 

  10. Malyszko J, Karbarz M (2006) Electrochemical oxidation of trolox and a-tocopherol in acetic acid: A comparative study. J Electroanal Chem 595:136-144

    Article  CAS  Google Scholar 

  11. Timbola AK, de Souza CD, Giacomelli C, et al (2006) Electrochemical oxidation of quercetin in hydroalcoholic solution. J Braz Chem Soc 17:139-148

    Article  CAS  Google Scholar 

  12. Jovanovic SV, Steenken S, BooneCW, et al (1999) H-Atom Transfer IsAPreferred Antioxidant Mechanism of Curcumin. J Am Chem Soc 121:9677-9681

    Google Scholar 

  13. Mullen W, Rouanet JM, Auger C, et al (2008) Bioavailability of [2-(14)C]quercetin-4’- glucoside in rats. J Agric Food Chem 2456(24):12127-12137.

    Article  Google Scholar 

  14. Verschoyle RD, Steward WP, Gescher AJ (2007) Putative cancer chemopreventive agents of dietary origin-how safe are they? Nutr Cancer 59(2):152-162.

    Article  PubMed  CAS  Google Scholar 

  15. van der Woude H, Alink GM, van Rossum BE, et al (2005) Formation of transient covalent protein and DNA adducts by quercetin in cells with and without oxidative enzyme activity. Chem Res Toxicol 18(12):1907-1916

    Article  PubMed  Google Scholar 

  16. Sun W,WangW,Kim J, et al (2008) Anti-cancer effect of resveratrol is associatedwith induction of apoptosis via a mitochondrial pathway alignment. Adv Exp Med Biol 614:179-186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Okunieff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Zhang, M. et al. (2011). Antioxidant Properties of Quercetin. In: LaManna, J., Puchowicz, M., Xu, K., Harrison, D., Bruley, D. (eds) Oxygen Transport to Tissue XXXII. Advances in Experimental Medicine and Biology, vol 701. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7756-4_38

Download citation

Publish with us

Policies and ethics