Skip to main content

Morphogenesis of Embryonic CNS Vessels

  • Chapter
Angiogenesis in Brain Tumors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 117))

Abstract

This chapter focuses on the morphology of blood vessel formation in and around the early central nervous system (CNS, i.e., brain and spinal cord) of avian embryos. We discuss cell lineages, proliferation and interactions of endothelial cells, pericytes and smooth muscle cells, and macrophages. Due to space limitations, we can not review the molecular control of CNS angiogenesis, but refer the reader to other chapters in this book and to recent publications on the assembly of the vasculature (1, 2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tomanek RJ: Assembly of the Vasculature and Its Regulation. Birkhäuser, Boston, Basel, Berlin, 2002

    Google Scholar 

  2. Kurz H, Christ B: Vascular development of the brain and spinal cord. In: Tomanek RJ (ed) Assembly of the Vasculature and Its Regulation. Birkhäuser, Boston, Basel, Berlin, 2002, pp 157–191

    Chapter  Google Scholar 

  3. Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B: Segmentation of the vertebrate body. Anat Embryol 197: 1–8, 1998

    Article  PubMed  CAS  Google Scholar 

  4. Huang R, Zhi Q, Wilting J, Christ B: The fate of somitocoele cells in avian embryos. Anat Embryol 190: 243–250, 1994

    Article  PubMed  CAS  Google Scholar 

  5. Wilting J, Brand-Saben B, Huang R, Zhi Q, Köntges G, Ordahl CP, Christ B: Angiogenic potential of the avian somite. Dev Dynam 202: 165–171, 1995

    Article  CAS  Google Scholar 

  6. Couly G, Coltey P, Eichmann A, Le Douarin NM: The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 53: 97112, 1995

    Article  Google Scholar 

  7. Kurz H, Korn J, Eggli PS, Huang R, Christ B: Embryonic central nervous system angiogenesis does not involve blood-borne endothelial progenitors. J Comp Neurol 436: 263–274,2001

    Article  PubMed  CAS  Google Scholar 

  8. Christ B, Poelmann RE, Mentink MM, Gittenberger-deGroot AC: Vascular endothelial cells migrate centripetally within embryonic arteries. Anat Embryol 181: 333–339, 1990

    Article  PubMed  CAS  Google Scholar 

  9. Wilms P, Christ B, Wilting J, Wachtler: Distribution and migration of angiogenic cells from grafted avascular intraembryonic mesoderm. Anat Embryol 183: 371–377, 1991

    Article  PubMed  CAS  Google Scholar 

  10. LaBonne C, Bronner-Fraser M: Induction and patterning of the neural crest, a stem cell-like precursor population. J Neurobiol 36: 175–189, 1998

    Article  PubMed  CAS  Google Scholar 

  11. Groves AK, Bronner-Fraser M: Neural crest diversification. Curr Top Dev Biol 43: 221–258, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Etchevers HC, Couly G, Vincent C, Le Douarin NM: Anterior cephalic neural crest is required for forebrain viability. Development 126: 3533–3543, 1999

    PubMed  CAS  Google Scholar 

  13. Etchevers HC, Vincent C, Le Douarin NM, Couly GF: The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128: 1059–1068, 2001

    PubMed  CAS  Google Scholar 

  14. Nehls V, Drenckhahn D: The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry 99: 1–12, 1993

    Article  PubMed  CAS  Google Scholar 

  15. Hungerford JE, Little CD: Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36: 2–27, 1999

    Article  PubMed  CAS  Google Scholar 

  16. Asahara T, Isner JM: Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 11: 171–178, 2002

    Article  PubMed  Google Scholar 

  17. Eichmann A, Pardanaud L, Yuan L, Moyon D: Vasculogenesis and the search for the hemangioblast. J Hematother Stem Cell Res 11: 207–214, 2002

    Article  PubMed  Google Scholar 

  18. Hirschi KK, Goodell MA: Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9: 648–652, 2002

    Article  PubMed  CAS  Google Scholar 

  19. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD: Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 125: 1457–1468, 1998

    PubMed  CAS  Google Scholar 

  20. Yamashita J, Itoh H, Hirashima M, Minetaro O, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa SI: Flk 1 -positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408: 92–96, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Drake CJ, Little CD: VEGF and vascular fusion: implications for normal and pathological vessels. Histochem Cytochem 74: 1351–1355, 1999

    Article  Google Scholar 

  22. Burn PH, Tarek MR: A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228: 35–45, 1990

    Article  Google Scholar 

  23. Kurz H: Physiology of angiogenesis. J Neurooncol 50: 17–35, 2000

    Article  PubMed  CAS  Google Scholar 

  24. Patan S: Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50: 1–15, 2000

    Article  PubMed  CAS  Google Scholar 

  25. Patan S, Haenni B, Burri PH: Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol 187: 121–130, 1993

    Article  PubMed  CAS  Google Scholar 

  26. Djonov V, Schmid M, Tschanz SA, Burri PH: Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86: 286–292, 2000

    Article  PubMed  CAS  Google Scholar 

  27. Kurz H, Ambrosy S, Wilting J, Marme D, Christ B: Proliferation pattern of capillary endothelial cells in chorioallantoic membrane development indicates local growth control, which is counteracted by vascular endothelial growth factor application. Dev Dynam 203: 174–186, 1995

    Article  CAS  Google Scholar 

  28. Feucht M, Christ B, Wilting J: VEGF induces cardiovascular malformation and embryonic lethality. Am J Pathol 151: 1407–1416, 1997

    PubMed  CAS  Google Scholar 

  29. Djonov VG, Galli AB, Burri PH: Intussusceptive arborization contributes to vascular tree formation in the chick chorio-allantoic membrane. Anat Embryol 202: 347–357, 2000

    Article  PubMed  CAS  Google Scholar 

  30. Djonov V, Kurz H, Burri PH: Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dynam: 224: 391–402, 2002

    Article  Google Scholar 

  31. Kurz H, Burri PH, Djonov V: Angiogenesis and vascular remodeling by intussusception - from form to function. News Physiol Sci: 18: 65–70, 2003

    PubMed  Google Scholar 

  32. Benjamin LE, Hemo I, Keshet E: A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125: 1591–1598, 1998

    PubMed  CAS  Google Scholar 

  33. Allt G, Lawrenson JG: Pericytes: cell biology and pathology. CTO 169: 1–11, 2001

    PubMed  CAS  Google Scholar 

  34. Hellström M, Gerhardt H, Kal¨¨n M, Li X, Eriksson U, Wolburg H, Betsholtz C: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153: 543–553, 2001

    Article  PubMed  Google Scholar 

  35. Eberhard A, Kahiert S, Goede V, Hemmerlein B, Plate KH, Augustin HG: Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60: 1388–1393, 2000

    PubMed  CAS  Google Scholar 

  36. Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C: Analysis of mural cell recruitment to tumor vessels. Circulation 105: 112–117, 2002

    Article  PubMed  CAS  Google Scholar 

  37. Kurz H, Lauer D, Papoutsi M, Christ B, Wilting J: Pericytes in experimental MDAMB231 tumor angiogenesis. Histochem Cell Biol: 117: 527–534, 2002

    Article  PubMed  CAS  Google Scholar 

  38. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160: 9851000, 2002

    Google Scholar 

  39. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103: 159–165, 1999

    Article  PubMed  CAS  Google Scholar 

  40. Benjamin LE: The controls of microvascular survival. Cancer Metastasis Rev 19: 7581, 2000

    Article  Google Scholar 

  41. Moldovan NI: Role of monocytes and macrophages in adult angiogenesis: a light at the tunnel’s end. J Hematother Stem Cell Res 11: 179–194, 2002

    Article  PubMed  Google Scholar 

  42. Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C: Macrophages and angiogenesis. J Leukoc Biol 55: 410–422, 1994

    PubMed  Google Scholar 

  43. Strong LH: The first appearance of vessels within the spinal cord of the mammal: Their developing patterns as far as partial formation of the dorsal septum. Acta Anat 44: 80108, 1961

    Article  Google Scholar 

  44. Aitkenhead M, Christ B, Eichmann A, Feucht M, Wilson DJ, Wilting J: Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail. Dev Dynam 212: 1–13, 1998

    Article  CAS  Google Scholar 

  45. Breier G, Albrecht U, Sterrer S, Risau W: Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114: 521–532, 1992

    PubMed  CAS  Google Scholar 

  46. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau: Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8: 529–532, 1998

    Article  PubMed  CAS  Google Scholar 

  47. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre, PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180, 1996

    Article  PubMed  CAS  Google Scholar 

  48. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD: Increased vascularization in mice overexpressing angiopoietin-1. Science 282: 468–471, 1998

    Article  PubMed  CAS  Google Scholar 

  49. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R: Idl and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenografts. Science 401: 670–677, 1999

    CAS  Google Scholar 

  50. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R: Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13: 295–306, 1999

    Article  PubMed  CAS  Google Scholar 

  51. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD: Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230: 151–160, 2001

    Article  PubMed  CAS  Google Scholar 

  52. Kurz H, Gärtner T, Eggli PS, Christ B: First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 173: 133–147, 1996

    Article  PubMed  CAS  Google Scholar 

  53. Klessinger S, Christ B: Axial structures control laterality in the distribution pattern of endothelial cells. Anat Embryol 193: 319–330, 1996

    Article  PubMed  CAS  Google Scholar 

  54. Cossmann PH, Eggli PS, Christ B, Kurz H: Mesoderm-derived cells proliferate in the embryonic central nervous system: confocal microscopy and three-dimensional visualization. Histochem Cell Biol 107: 205–213, 1997

    Article  PubMed  CAS  Google Scholar 

  55. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13: 9–22, 1999

    PubMed  CAS  Google Scholar 

  56. Plate KH: Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58: 313320, 1999

    Google Scholar 

  57. Britsch S, Christ B, Jacob HJ: The influence of cell-matrix interactions on the development of quail chorioallantoic vascular system. Anat Embryol 180: 479–484, 1989

    Article  PubMed  CAS  Google Scholar 

  58. Poelmann RE, Gittenberger-deGroot AC, Mentink MM, Delpech B, Girard N, Christ B: The extracellular matrix during neural crest formation and migration in rat embryos. Anat Embryol 182: 29–39, 1990

    Article  PubMed  CAS  Google Scholar 

  59. Strong LH: The early embryonic pattern of internal vascularization of the mammalian cerebral cortex. J Comp Neurol 123: 121–138, 1964

    Article  PubMed  CAS  Google Scholar 

  60. Jaworski DM, Kelly GM, Hockfield S: The CNS-specific hyaluronan-binding protein BEHAB is expressed in ventricular zones coincident with gliogenesis. J Neurosci 15: 1352–1362, 1995

    PubMed  CAS  Google Scholar 

  61. Turley EA, Hossain MZ, Sorokan T, Jordan LM, Nagy JI: Astrocyte and microglial motility in vitro is functionally dependent on the hyaluronan receptor RHAMM. GLIA 12: 68–80, 1994

    Article  PubMed  CAS  Google Scholar 

  62. Gary SC, Kelly GM, Hockfield S: BEHAB/brevican: A brain-specific lectican implicated in gliomas and glial cell motility. Curr Opin Neurobiol 8: 576–581, 1998

    Article  PubMed  CAS  Google Scholar 

  63. Cotman SL, Halfter W, Cole GJ: Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res 249: 54–64, 1999

    Article  PubMed  CAS  Google Scholar 

  64. Margolis RK, Rauch U, Maurel P, Margolis RU: Neurocan and phosphacan: two major nervous tissue-specific chondroitin sulfate proteoglycans. Persp Dev Neurobiol 3: 273290, 1996

    Google Scholar 

  65. Seiffert D, Iruela-Arispe ML, Sage EH, Loskutoff DJ: Distribution of vitronectin mRNA during murine development. Dev Dynam 203: 71–79, 1995

    Article  CAS  Google Scholar 

  66. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco, KJ, Johnston RN, Brasher PMA, Sutherland G, Edwards DR: Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MTl-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Brit J Cancer 79: 1828–1835, 1999

    Article  PubMed  CAS  Google Scholar 

  67. Chen WT: Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein 49: 59–71, 1996

    PubMed  CAS  Google Scholar 

  68. Kelly T, Yan Y, Osborne RL, Athota AB, et al.: Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis 16: 501–512, 1998

    Article  PubMed  CAS  Google Scholar 

  69. Lamoreaux WJ, Fitzgerald ME, Reiner A, et al.: Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res 55: 29–42, 1998

    Article  PubMed  CAS  Google Scholar 

  70. Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, Jesty J: Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer 75: 780–786, 1998

    Article  PubMed  Google Scholar 

  71. Nguyen M, Arkell J, Jackson CJ: Thrombin rapidly and efficiently activates gelatinase A in human microvascular endothelial cells via a mechanism independent of active MT1 matrix metalloproteinase. Lab Invest 79: 467–475, 1999

    PubMed  CAS  Google Scholar 

  72. Nehls V, Hellmann R, Huhnken M: Guided migration as a novel mechanism of capillary network remodeling is regulated by basic fibroblast growth factor. Histochem Cell Biol 109: 319–329, 1998

    Article  PubMed  CAS  Google Scholar 

  73. Bär T, Guldner FH, Wolff JR: ’Seamless’ endothelial cells of blood capillaries. Cell Tiss Res 235: 99–106, 1984

    Google Scholar 

  74. Wolff JR, Bär T: ’Seamless’ endothelia in brain capillaries during development of the rat’s cerebral cortex. Brain Res 41: 17–24, 1972

    Article  PubMed  CAS  Google Scholar 

  75. Caprioli A, Jaffredo T, Gautier R, Dubourg C, Dieterlen-Lievre F: Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA 95: 1641–1646, 1998

    Article  PubMed  CAS  Google Scholar 

  76. Papoutsi M, Tomarev SI, Eichmann A, et al.: Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dynam 222: 238–251, 2001

    Article  CAS  Google Scholar 

  77. Asahara T, Masuda H, Takahashi T, et al.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228, 1999

    Article  PubMed  CAS  Google Scholar 

  78. Goldbrunner RH, Bernstein JJ, Plate KH, Vince GH, Roosen K, Tonn JC: Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms. J Neurosci Res 55: 486–495, 1999

    Article  PubMed  CAS  Google Scholar 

  79. Zhang ZG, Zhang L, Jiang Q, Chopp M: Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90: 284–288, 2002

    Article  PubMed  CAS  Google Scholar 

  80. Cuadros MA, Martin C, Coltey P, Almendros A, Navascues J: First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol 330: 113–129, 1993

    Article  PubMed  CAS  Google Scholar 

  81. Cuadros MA, Navascues J: The origin and differentiation of microglial cells during development. Prog Neurobiol 56: 173–189, 1998

    Article  PubMed  CAS  Google Scholar 

  82. Kurz H, Christ B: Embryonic CNS macrophages and microglia do not stem from circulating, but from extravascular precursors. GLIA 22: 98–102, 1998

    Article  PubMed  CAS  Google Scholar 

  83. Suzuki T, Ogata A, Tashiro K, Nagashima K, Tamura M, Nishihira J: Augmented expression of macrophage inhibitory factor MIF in the telencephalon of the developing rat brain. Brain Res 816: 457–462, 1999

    Article  PubMed  CAS  Google Scholar 

  84. Roncali L, Virgintino D, Coltey P, Bertossi M, Errede M, Ribatti D, Nico B, Mancini L, Sorino S, Riva A: Morphological aspects of the vascularization in intraventricular neural transplants from embryo to embryo. Anat Embryol 193: 191–203, 1996

    Article  PubMed  CAS  Google Scholar 

  85. Hurley SD, Walter SA, Semple-Rowland SL, Streit WJ: Cytokine transcripts expressed by microglia in vitro are not expressed by ameboid microglia of the developing rat central nervous system. GLIA 25: 304–309, 1999

    Article  PubMed  CAS  Google Scholar 

  86. Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B: Microglia and macrophages are major sources of locally produced transforming growth factor-betal after transient middle cerebral artery occlusion in rats. GLIA 24: 437–448, 1998

    Article  PubMed  CAS  Google Scholar 

  87. Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R. Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14: 1651–1658, 2001

    Article  PubMed  CAS  Google Scholar 

  88. Streit WJ, Graeber MB: Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm. GLIA 7: 68–74, 1993

    Article  PubMed  CAS  Google Scholar 

  89. Rucker HK, Wynder HJ, Thomas WE: Cellular mechanisms of CNS pericytes. Brain Res Bull 51: 363–369, 2000

    Article  PubMed  CAS  Google Scholar 

  90. Thomas WE: Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31: 42–57, 1999

    Article  PubMed  CAS  Google Scholar 

  91. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-deGroot AC: Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82: 221–231, 1998

    Article  PubMed  CAS  Google Scholar 

  92. Ehler E, Karlhuber G, Bauer HC, Draeger A: Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell Tiss Res 279: 393–403, 1995

    Article  CAS  Google Scholar 

  93. Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, Allt G: Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30: 3544, 2001

    Article  Google Scholar 

  94. Bertossi M, Riva A, Congiu T, Virgintino D, Nico B, Roncali L: A compared TEM/SEM investigation on the pericytic investment in developing microvasculature of the chick optic tectum. J Submicrosc Cytol Pathol 27: 349–358, 1995

    PubMed  CAS  Google Scholar 

  95. Gerhardt H, Wolburg H, Redies C: N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dynam 218: 472–479, 2000

    Article  CAS  Google Scholar 

  96. Balabanov R, Beaumont T, Dore-Duffy P: Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 55: 578–587, 1999

    Article  PubMed  CAS  Google Scholar 

  97. Lindahl P, Johansson BR, Leveen P, Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277: 242–245, 1997

    Article  PubMed  CAS  Google Scholar 

  98. Lindahl P, Hellström M, Kal¨¨n M, Betsholtz C: Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9: 407–411, 1998

    Article  PubMed  CAS  Google Scholar 

  99. Oh SJ, Kurz H, Christ B, Wilting J: Platelet-derived growth factor-B induces transformation of fibrocytes into spindle-shaped myofibroblasts in vivo. Histochem Cell Biol 109: 349–357, 1998

    Article  PubMed  CAS  Google Scholar 

  100. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA: Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84: 298–305, 1999

    Article  PubMed  CAS  Google Scholar 

  101. Cossmann PH, Eggli PS, Kurz H: Three-dimensional analysis of DNA replication foci: a comparative study on species and cell type in situ. Histochem Cell Biol 113: 195–205, 2000

    Article  PubMed  CAS  Google Scholar 

  102. Lee SH, Hungerford JE, Little CD, Iruela-Arispe ML: Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall. Dev Dynam 209: 342–352, 1997

    Article  CAS  Google Scholar 

  103. Korn J, Christ B, Kurz H: Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442: 78–88, 2002

    Article  PubMed  Google Scholar 

  104. Campbell K, Götz M: Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25: 235–238, 2002

    Article  PubMed  CAS  Google Scholar 

  105. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16: 2684–2698, 2002

    Article  PubMed  CAS  Google Scholar 

  106. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–1177, 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kurz, H., Korn, J., Christ, B. (2004). Morphogenesis of Embryonic CNS Vessels. In: Kirsch, M., Black, P.M. (eds) Angiogenesis in Brain Tumors. Cancer Treatment and Research, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8871-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8871-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4699-9

  • Online ISBN: 978-1-4419-8871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics