Skip to main content

Study of the Vertebrate MHC Multigene Family During Heart Development

  • Conference paper
Molecular and Cellular Aspects of Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

Abstract

In vertebrates such as birds and mammals, looping and septation generate the four-chambered heart. The origin and lineage relationships of cardiac cell types, endocardial endothelia, ventricular myocytes, and atrial myocytes, constitute the tubular heart when it begins rhythmic contraction. Each cardiac cell type is established by lineage diversification of embryonic cells which arise from one of three distinct origins, cardiogenic mesoderm neural crest, or proepicardium. The structural and functional diversity of the striated muscle is reflected by the presence of a variety of myosin isoforms and is composed of two heavy chains and four light chains. A family of MHC genes encodes myosin heavy chains (MHCs). The vertebrate MHC multigene family has been subdivided into fast skeletal muscle and cardiac/slow skeletal muscle subfamilies (Stedman et al., 1990). The type of MHC expressed in a muscle cell defines the specific type of muscle fiber, significantly affects its contractile properties, and serves as an excellent marker for differentiated cardiac and skeletal muscle (Masaki and Yoshizaki, 1974; Moore et al., 1992; Nguyen et al, 1982, Nudel et al., 1980; Reiser et al., 1988; Robbins et al., 1986: Sartore et al., 1978). The expression of each MHC isoform is regulated in tissue-specific and developmental stage-specific ways (Bader et al., 1982; Bandman et al., 1982; Evans et al., 1988; Lompre et al., 1984). At present, 9 distinct chick sarcomeric MHC isoforms have been described at the protein level in the skeletal muscle, atria, ventricles, and conduction system (de Jong et al., 1988; Bandman and Rosser, 2000; Evans et al., 1988; Gonzalez-Sanchez and Bader, 1984, 1985; Zhang et al, 1986). To date, at both the gene and protein levels, atrial (Oana et al., 1995, 1998; Yutzey et al., 1994) and ventricular (Bisaha and Bader, 1991; Machida et al., 2000a; Stewart et al., 1991) MHCs have been characterized well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alyonycheva T, Cohen-Gould L, Siewert C, Fischman DA and Mikawa T (1997). Skeletal muscle-specific myosin binding protein-H is expressed in Purkinje fibers of the cardiac conduction system. Circ. Res. 80, 665–672

    Article  PubMed  CAS  Google Scholar 

  • Bader D, Masaki T and, Fischman DA (1982). Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and, in vitro. J. Cell Biol. 95, 763–770

    Article  PubMed  CAS  Google Scholar 

  • Bandman E, Matsuda R and, Strohman RC (1982). Developmental appearance of myosin heavy and, light chain isoforms in vivo and, in vitro in chicken skeletal muscle. Dev. Biol. 93, 508–518

    Article  PubMed  CAS  Google Scholar 

  • Bandman E and Rosser BW (2000). Evolutionary significance of myosin heavy chain heterogeneity in birds. Microsc. Res. Tech. 50, 473–491

    Article  CAS  Google Scholar 

  • Bisaha JG and Bader D (1991). Identification and characterization of a ventricular-specific avian myosin heavy chain, VMHC1: expression in differentiating cardiac and skeletal muscle. Dev. Biol. 148, 355–364

    Article  PubMed  CAS  Google Scholar 

  • Bourke DL, Wylie SR, Theon A and Bandman E (1995). Myosin heavy chain expression following myoblast transfer into regenerating chicken muscle. Basic Appl. Myol. 5, 43–56

    Google Scholar 

  • Chan-Thomas PS, Thompson R, Robert B, Yacoub MH and Barton PJR (1993). Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev. Dyn. 197, 203–216

    Article  PubMed  CAS  Google Scholar 

  • Chao TH and Bandman E (1997). Cloning nucleotide sequence and characterization of a full-length cDNA encoding the myosin heavy chain from adult chicken pectoralis major muscle. Gene 199, 265–270

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Moore LA, Wick M and Bandman E (1997). Identification of a genomic locus containing three slow myosin heavy chain genes in the chicken. Biochim. Biophys. Acta 1353, 148–156

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P and Sacchi N (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159

    Article  PubMed  CAS  Google Scholar 

  • de Groot IJM, Sanders E, Visser SD, Lamers WH, de Jong F, Los JA and Moorman AFA (1987). Isomyosin expression in developing chicken atria: a marker for the development of conductive tissue. Anat. Embryol. 176, 515–523

    Article  PubMed  Google Scholar 

  • de Jong F, de Groot IJM, Geerts WJC, Wessels A, Peschar AW, Lamers WH, and Moorman AFM (1988). Immunohistochemical evidence for two differentially expressed atrial myosin heavy chain isoforms during avian cardiogenesis. In: Sarcomeric and Non-sarcomeric Muscles: Basic and Applied Research Prospects for the 90s (Cazzazo U, editor) Unipress Padova, Padova, 299–304

    Google Scholar 

  • DiMario JX and Stockdale FE (1997). Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev. Biol. 188, 167–180

    Article  PubMed  CAS  Google Scholar 

  • Evans D, Miller JB and Stockdale FE (1988). Developmental patterns of expression and coexpression of myosin heavy chains in atrial and ventricles of the avian heart. Dev. Biol. 127, 376–383

    Article  PubMed  CAS  Google Scholar 

  • Filogamo G, Corvetti G and Daneo LS (1990). Differentiation of cardiac conducting cells from the neural crest. J. Autono. Nerv. System 30, S55–S58

    Article  Google Scholar 

  • Fishman MC and Olson EN (1997). Parsing the heart: genetic modules for organ assembly. Cell 91, 153–156

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Sanchez A and Bader D (1984). Immunochemical analysis of myosin heavy chains in the developing chicken heart. Dev. Biol. 103, 151–158

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Sanchez A and Bader D (1985). Characterization of a myosin heavy chain in the conductive system of the adult heart and developing chicken heart. J. Cell Biol. 100, 270–275

    Article  PubMed  CAS  Google Scholar 

  • Gourdie RG, Miwa T, Thompson RP and Mikawa T (1995). Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121, 1423–1431

    PubMed  CAS  Google Scholar 

  • Habets PEMH, Moorman AFM, Clout DEW, van Roon MA, Lingbeek M, van Lohuizen M, Campione M and Christoffels VM (2002). Cooperative action of TBx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for caerdiac chamber formation. Genes. & Dev. 16, 1234–1246

    Article  CAS  Google Scholar 

  • Kirby ML, McKenzie JW and Weidman TA (1980). Developing innervation of the chick heart: a histofluorescence and light microscopic study. Anat. Rec. 196, 333–340

    Article  PubMed  CAS  Google Scholar 

  • Lefeuvre B, Crossin F, Fontaine-Perus J, Bandman E and Gardahaut MF (1996). Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech. Dev. 58, 115–127

    Article  PubMed  CAS  Google Scholar 

  • Lompre AM, Nadal-Ginard B and Mahdavi V (1984). Expression of the cardiac ventricular a-and b-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259, 6437–6446

    PubMed  CAS  Google Scholar 

  • Machida S, Matsuoka R, Noda S, Hiratsuka E, Takagaki Y, Oana S, Furutani Y, Nakajima H, Takao A and Momma K (2000a). Evidence for the expression of neonatal skeletal myosin heavy chain in primary myocardium and cardiac conduction tissue in the developing chick heart. Dev.Dyn. 217, 37–49

    Article  PubMed  CAS  Google Scholar 

  • Machida S, Noda S, Furutani Y, Takao A, Momma K and Matsuoka R (2000b). Complete sequence and characterization of chick ventricular myosin heavy chain in the developing atria. Biochim. Biophys. Acta 1490, 333–341

    Article  PubMed  CAS  Google Scholar 

  • Machida S, Noda S, Takao A, Nakazawa M and Matsuoka R (2002). Expression of slow skeletal myosin heavy chain 2 gene in Purkinje fiber cells in chick heart. Biol. Cell 94, 389–399

    Google Scholar 

  • Mahdavi V, Periasamy M and Nadal-Ginard B (1982). Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature 297, 659–664

    Article  PubMed  CAS  Google Scholar 

  • Masaki T and Yoshizaki C (1974). Differentiation of myosin in chick embryos. J. Biochem. 76, 123–131

    PubMed  CAS  Google Scholar 

  • Matsuoka R, Beisel, KW, Furutani M, Arai S and Takao A (1991). Complete sequence of human cardiac and β-myosin heavy chain gene and amino acid comparison to other myosin based on structural and functional differences. Am. Med. Genet. 41, 537–547

    Article  CAS  Google Scholar 

  • Mikawa T and Fischman DA (1996). The polyclonal origin of myocyte lineages. Annu. Rev. Physiol. 58, 509–521

    Article  PubMed  CAS  Google Scholar 

  • Molina IM, Kropp KE, Gulick J and Robbins J (1987). The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J. Biol. Chem. 262, 6489–6493

    Google Scholar 

  • Moore LA, Arrizubieta MJ, Tidyman WE, Herman LA and Bandman E (1992). Analysis of the chicken fast myosin heavy chain family. Localization of isoform-specific antibody epitopes and regions of divergence. J. Mol. Biol. 225, 1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Moorman AFM, de Jong F, Denyn MMFJ and Lamers WH (1998). Development of the cardiac conduction system. Circ. Res. 82, 629–644

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Gubits RM, Wydro RM and Nadal-Ginard B (1982). Sarcomeric myosin heavy chain is coded by a highly conserved multigene family. Proc. Natl. Acad. Sci. U.S.A. 79, 5230–5234

    Article  PubMed  CAS  Google Scholar 

  • Nudel U, Katcoff D, Carmon Y, Zevin-Sonkin D, Levi Z, Shaul Y, Shani M and Yaffe D (1980). Identification of recombinant phages containing sequences from different rat myosin heavy chain genes. Nucleic Acids Res. 8, 2133–2146

    Article  PubMed  CAS  Google Scholar 

  • Oana S, Matsuoka R, Nakajima H, Hiratsuka E, Furutani Y, Takao A and Momma K (1995). Molecular characterization of a novel atrial-specific myosin heavy-chain in the chick embryo. Eur. J. Cell Biol. 67, 42–49

    PubMed  CAS  Google Scholar 

  • Oana S, Machida S, Hiratsuka E, Furutani Y, Momma K, Takao A and Matsuoka R (1998). The complete sequence and expression patterns of the atrial myosin heavy chain in the developing chick, Biol. Cell 90, 605–613

    CAS  Google Scholar 

  • Olson EN and Klein WH (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8, 1–8

    Article  PubMed  CAS  Google Scholar 

  • Page S, Miller JB, DiMario JX, Hager EJ, Moser A and Stockdale FE (1992). Developmentally regulated expression of three slow isoforms of myosin heavy chain: diversity among the first fibers to form in avian muscle. Dev. Biol. 154, 118–128

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Greaser ML and Moss RL (1988). Myosin heavy chain composition of single cells from avian slow skeletal muscle is strongly correlated with velocity of shortening during development. Dev. Biol. 129, 400–407

    Article  PubMed  CAS  Google Scholar 

  • Robbins J, Horan T, Gulik J and Kroop K (1986). The chicken myosin heavy chain family. J. Biol. Chem. 261, 6606–6612

    PubMed  CAS  Google Scholar 

  • Sanders E, de Groot IJM, Geerts WJ, de Jong F, van Horssen AA, Los JA and Moorman AFA (1986). Tlie local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue. Anat. Embryol. 174, 187–193

    CAS  Google Scholar 

  • Sartore S, Pierobon-Bormioli S and Schiaffino S (1978). Immunohistochemical evidence for myosin polymorphism in the chicken heart Nature 274, 82–83

    CAS  Google Scholar 

  • Schiaffino S and Reggiani C (1996). Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76, 371–423

    CAS  Google Scholar 

  • Schiaffino S (1997). Protean patterns of gene expression in the heart conduction system. Circ. Res. 80, 749–750

    Article  PubMed  CAS  Google Scholar 

  • Stedman HH, Eller M, Jullian EH, Fertels SH, Sarkar S, Sylvester JE, Kelly AM and Rubinstein NA (1990). The human embryonic myosin heavy chain. Complete primary structure reveals evolutionary relationships with other developmental isoforms. J. Biol. Chem. 265, 3568–3576

    PubMed  CAS  Google Scholar 

  • Stewart AFR, Camoretti-Mercado B, Perlman D, Gupta M, Jakovcic S and Zak R (1991). Structural and phylogenetic analysis of the chicken ventricular myosin heavy chain rod. J. Mol. Evol. 33, 357–366

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi-Suzuki K, Pauliks LB, Ehsefon Y and Mikawa T (2001). Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle. Dev. Biol. 234, 390–401

    Article  PubMed  CAS  Google Scholar 

  • Thomell LE, Eriksson A, Johansson B, Kjorell U, franke WW, Virtanen I and Lehto VP (1985). Intermediate filament and associated proteins in heart purkinje fibers: A membrane-myofibril anchored cytoskeletal system. Arm. N.Y. Acad. Sci. 455, 213–240

    Article  Google Scholar 

  • Weiss A, Schiaffino S and Leinwand LA (1999). Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. J. Mol. Biol. 290, 61–75

    Article  PubMed  CAS  Google Scholar 

  • Yutzey KE, Rhee JT and Bader D (1994). Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart Development 120, 871–883

    CAS  Google Scholar 

  • Zhang Y, Shafiq SA and Bader D (1986). Detection of a ventricular-specific myosin heavy chain in adult and developing chicken heart. J. Cell Biol. 102, 1480–1484

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Matsuoka, R. (2003). Study of the Vertebrate MHC Multigene Family During Heart Development. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics