Skip to main content

Oxidative Stress in Cardiovascular Complications of Diabetes

  • Chapter
Atherosclerosis, Hypertension and Diabetes

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 8))

Abstract

The burden of cardiovascular disease related to diabetes will increase substantially in the coming decades. Diabetes, formerly thought as a problem of glucose metabolism, produces most of its harm by effects on the cardiovascular system. Atherosclerosis and other cardiovascular complications account for most of the deaths due to diabetes. Diabetics with cardiovascular complications fare worse than their counterparts. There is convincing experimental and clinical evidence that in diabetics the oxidative stress is increased. There are various mechanisms that contribute to the formation of free radicals and cause oxidative stress. Less certain however, is whether oxidative stress causes the development of long-term complications of diabetes or merely reflects one of the associated processes that are affected by diabetes. The precise mechanisms by which oxidative stress accelerates complications of diabetes are only partly known. There is, however, evidence for the role of protein kinase C, advanced glycation end products and activation of certain transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. 1993. Free radicals and the heart. Pharma col Toxicol Methods 30:55–67.

    Article  CAS  Google Scholar 

  2. Kaul N, Siveski-Iliskovic N, Thomas TP, Hill M, Khaper N, Singal PK. 1995. Probucol improves antioxidant activity and modulates development of diabetic cardiomyopathy. Nutrition ll: 551–554.

    CAS  Google Scholar 

  3. Kaul N, Siveski-Iliskovic N, Hill M, Khaper ••, Seneviratne C, Singal PK. 1996. Probucol treatment reverses antioxidant and functional deficit in diabetic cardiomyopathy. Mol Cell Biochem 160–161:283–288.

    Article  PubMed  CAS  Google Scholar 

  4. Godin DV, Wohaieb SA, Garnett ME, Goumeniouk AD. 1988. Antioxidant enzyme alterations in experimental and clinical diabetes. Mol Cell Biochem 84:223–231.

    Article  PubMed  CAS  Google Scholar 

  5. Halliwell B, Cross CE, Gutteridge JMC. 1992. Free radicals, antioxidants and human disease: Where we are now? J Lab Clin Med 119:598–620.

    PubMed  CAS  Google Scholar 

  6. Singal PK, Petkau A, Gerrard JM, Hrushovetz S, Foerster J. 1988. Free radicals in health and disease. Mol Cell Biochem 84:121–122.

    Article  PubMed  CAS  Google Scholar 

  7. Whiteman M, Jenner A, Halliwell B. 1997. Hypochlorous acid-induced base modification in isolated calf thymus DNA. Chem Res Toxicol 10:1240–1246.

    Article  PubMed  CAS  Google Scholar 

  8. Steinberg D, Parthasarathy S, Carew TE. 1989. Beyond cholesterol. Modifications of low-density lipoprotein that increases its atherogenicity. New Engl J Med 320:915–924.

    Article  PubMed  CAS  Google Scholar 

  9. Carew TE, Schwenke DC, Steinberg D. 1987. Antiatherognic effect of probucol unrelated to it hypoc holeteolemic effect: evidence that antioxidants invivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of altherosclersis in the Watanable heritable hyperlipemic rabbit. Proc Natl Acad Sci USA 84:7725–7729.

    Article  PubMed  CAS  Google Scholar 

  10. Jha P, Flather M, Lonn E, FarKouh M, Yusuf S. 1995. The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical data. Ann Intern Med 123:860–872.

    PubMed  CAS  Google Scholar 

  11. Rudich A, Kozlovsky N, Potashnik R, Bashan N. 1998. Oxidant stress reduces insulin responsiveness in 3T3–L1 adipocyte and skeletal muscle insulin resistance. Diabetolgia 41 (Suppl. 1):A34.

    Google Scholar 

  12. Stephens NG, Parsons A, Schofield PM, et al. 1996. A randomized controlled trial of vitamin E in patients with coronary diseases: The Cambridge heart antioxidant study (CHAOS). Lancet 347: 781–786.

    CAS  Google Scholar 

  13. Rimm EB, Stampfer MJ, Ascherio A. 1993. Vitamin E consumption and coronary heart disease in men. N Engl J Med 328:1450–1456.

    Article  PubMed  CAS  Google Scholar 

  14. Dandona P, Thusu K. 1996. Oxidative damage DNA in diabetes mellitus. Lancet 347:444–445.

    Article  PubMed  CAS  Google Scholar 

  15. Greisbacher A, Kinderhauser M, Andet ••. 1995. Enhanced serum levels of TBARS in diabetes mellitus. Am J Med 98:469–475.

    Article  Google Scholar 

  16. Nourouz-Zadeh J, Tajaddini-Sarmadi J. 1995. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44:1054–1058.

    Article  Google Scholar 

  17. Tsai EC, Hirch IB, Brunzell JD, Chait A. 1994. Reduced plasma peroxyl radical; trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 43:1010–1014.

    Article  PubMed  CAS  Google Scholar 

  18. Chari SN, Nath N, Rathi AB. 1984. Glutathione and its redox system in diabetic polymorphonuclear leukocytes. Am J Med Sci 287:14–15.

    Article  PubMed  CAS  Google Scholar 

  19. Suarez G, Rajaram R, Oronsky AL, Gawinowicz MA. 1989. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 264:3674–3679.

    PubMed  CAS  Google Scholar 

  20. Arai K, Maguchi S, Fuji S, Ishibashi H, Oikawa K,Taniguchi N. 1987. Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem 262: 16969–16972.

    CAS  Google Scholar 

  21. Wolff SP, Dean RT. 1987. Glucose auto-oxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem J 245:243–250.

    PubMed  CAS  Google Scholar 

  22. Bunn HF. 1981. Nonenzymatic glycosylation of protein: relevance to diabetes. Am J Med 70:325–330.

    Article  PubMed  CAS  Google Scholar 

  23. Thornalley PJ, Wolff SP, Crabbe MJ, Stern A. 1984. The oxidation of oxyhaemoglobin by glyceraldehyde and other simple monosaccharides. Biochem J 217:615–622.

    PubMed  CAS  Google Scholar 

  24. Ahmed MU, Thorpe SR, Baynes JW. 1986. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 261:4889–4894.

    CAS  Google Scholar 

  25. Sakurai T, Tsuchiya S. 1988. Superoxide production from nonenzymatically glycated protein. FEBS Lett 236:406–410.

    Article  PubMed  CAS  Google Scholar 

  26. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D. 1994. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897.

    PubMed  CAS  Google Scholar 

  27. Higgins PJ, Garlick RL, Bunn HE 1982. Glycosylated hemoglobin in human and animal red cells. Role of glucose permeability. Diabetes 31:743–748.

    Article  PubMed  CAS  Google Scholar 

  28. Du XL, Stockklauser-Farber K, Rosen P. 1999. Generation of reactive oxygen intermediates, activation of NfkappaB, and induction of apoptosis in human endothelial cells by Glucose: Role of nitric oxide synthase? Free Radic Med Biol 27:752–763.

    Article  CAS  Google Scholar 

  29. Kashiwagi A, Asahina T, Ikebuchi M, et al. 1994. Abnormal glutathione metabolism and increased cytotoxicity caused by H202 in human umbilical vein endothelial cells, cultured in high glucose medium. Diabetollogia 37:264–269.

    Article  CAS  Google Scholar 

  30. Ceriello A. 1997. Acute hyperglycemia and oxidative stress generation. Diabet Med 14:S45–S49.

    Article  PubMed  Google Scholar 

  31. Wascher TC, Toplak H, Krejs GJ, Simecek S, Kukovetz WR, Graier WE 1994. Intracellular mechanisms involved in D-glucose mediated amplification of agonist-induced Ca response and EDRF formation in vascular endothelial cells. Diabetes 43:984–991.

    Article  PubMed  CAS  Google Scholar 

  32. Mullarkey C, Edestein D, Brownlee M. 1990. Free radical generation by early glycation products: a mechanism for accelerated arteriogenesis in diabetes. Biochem Biophys Res Commun 173:932–939.

    Article  PubMed  CAS  Google Scholar 

  33. Giardino I, Fard AK, Hatchell DL, Brownlee M. 1998. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 47:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  34. Diedrich D, Skopec J, Diedrich A, Dai FX. 1994. Endothelial dysfunction in mesentric resistance arteries of diabetics rats: role of free radicals. Am J Physiol 266: H1153–H1161.

    Google Scholar 

  35. Rosen P, Ballhausen T, Bloch W, Addics K. 1995. Endothelial relaxation is disturbed by oxidative stress in diabetic heart: The influences of tocopherol as antioxidant. Diabetolgia 38:1157–1168.

    Article  CAS  Google Scholar 

  36. Sundaram RK, Bhaskar A, Vijayalingam S, Viswanatthan M, Mohan R, Shanmugasundaram KR. 1996. Antioxidant status and lipid peroxidation in type II diabetes with and without complications. Clin Sci 90:255–260.

    PubMed  CAS  Google Scholar 

  37. Baynes JW. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–411.

    Article  PubMed  CAS  Google Scholar 

  38. Jarrett RJ, McCartney P, Keen H. 1982. The Bedford survey: ten year mortality rates in newly diag nosed diabetics, borderline diabetics and normoglycaemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 22:79–84.

    PubMed  CAS  Google Scholar 

  39. Wolff SP. 1993. Diabetes mellitus and free radicals. Br Med Bull 49:642–652.

    PubMed  CAS  Google Scholar 

  40. Warnholz A, Nickenig G, Schulz E, et al. 1999. Increased NADH-oxidase-mediated superoxide production in the early stages of atheroscleros evidence for involvement of the renin-angiotensin system. Circulation 99:2027–2033.

    Article  Google Scholar 

  41. Rosen P, Bartels H, Berkels R, Kirrmizugul I, Rosen R. 2000. Short term glucose stimulates the generation of reactive oxygen species, but eliminates free nitric oxide. Diabetes 49:134–135.

    Google Scholar 

  42. Nishikawa T, Edelstein D, Du XL, et al. 2000. Normalizing mithochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404:787–790.

    Article  PubMed  CAS  Google Scholar 

  43. .Nishizuka Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614.

    Article  PubMed  CAS  Google Scholar 

  44. King GI, Ishii H, Koya D. 1997. Diabetic vascular dysfunctions: a model of excessive activation of protein kinase C. Kidney Int 52:S77–S85.

    Google Scholar 

  45. Bierhaus A, Chevion S, Chevion M, et al. 1997. Advanced glycation end-products (AGEs) induced activation of NF-kB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1 46: 1481–1490.

    Article  Google Scholar 

  46. Schmidt A-M, Zhang JH, et al. 1994. Interaction of advanced glycation end-products with their endothelial cells receptor leads to enhanced expression of VCAM-1: A mechanism for augmented monocyte-vessel wall interactions in diabetes. FASEB J 8:3841–3842.

    Google Scholar 

  47. Bursell SE, Cletmont AC, Aiello LP, et al. 1999. High-dose Vitamine E supplementation normalize retinal blood flow and creatinine clearance in patients with type I diabetes. Diabetes care 22: 1245–1251.

    Article  PubMed  CAS  Google Scholar 

  48. Kunisaki M, Bursell S-E, Clermont AC, et al. 1995. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacyl-glycerol-protein kinase C pathway. Am J Physio 269:E239–E246.

    CAS  Google Scholar 

  49. Ohara Y, Peterson TE, Harrison DG. 1997. Hypercholesterolemia increases endothelial superoxide anion production. Hypertension 30:934–941.

    Article  Google Scholar 

  50. Bucala R, Tracy KJ, Ceramin A. 1991. Advanced glycation products quench nitric oxide and mediate defective endothelim dependent vasodilation in experimental diabetes. J Clinical Invest 97:22–28.

    Google Scholar 

  51. Ting HH, Timimi FK, Haley EA, et al. 1997. Vitamin C improves endothelium dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 95:2617–2622.

    Article  PubMed  CAS  Google Scholar 

  52. Park IS, Kiyomoto H, Abboud SL, Abboud HE. 1997. Expression of transforming growth factorbeta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 46:473–480.

    Article  PubMed  CAS  Google Scholar 

  53. Oliver JA, Adenylate cyclase and protein kinase C. 1990. Mediate opposite actions on endothelial junctions. J Cell Physiol 145:536–542.

    Article  PubMed  CAS  Google Scholar 

  54. Scheinman JL, Fish AJ, Matas AJ, Michael AF. 1987. The immunohistopathology of glomerular antigens. II. The glomerular basement membrane, actomyosin, and fibroblast surface antigens in normal, diseased and transplanted human kidneys, Am J Pathol 90:71–88.

    Google Scholar 

  55. Walker JD, Viberti GC. 1994. Pathophysiology of microvascular disease: an overview. In Chronic Complications of Diabetes, Pickup JC, Williams G (eds). Blackwell Scientific: Oxford, UK 11–19.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farahmand, F., Lou, H., Singal, P.K. (2003). Oxidative Stress in Cardiovascular Complications of Diabetes. In: Pierce, G.N., Nagano, M., Zahradka, P., Dhalla, N.S. (eds) Atherosclerosis, Hypertension and Diabetes. Progress in Experimental Cardiology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9232-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9232-1_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4850-4

  • Online ISBN: 978-1-4419-9232-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics