Skip to main content

Mast Cell Progenitor Trafficking and Maturation

  • Chapter
Mast Cell Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 716))

Abstract

Mast cells are derived from the hematopoietic progenitors found in bone marrow and spleen. Committed mast cell progenitors are rare in bone marrow suggesting they are rapidly released into the blood where they circulate and move out into the peripheral tissues. This migration is controlled in a tissue specific manner. Basal trafficking to the intestine requires expression of α4β7 integrin and the chemokine receptor CXCR2 by the mast cell progenitors and expression of MAdCAM-1 and VCAM-1 in the intestinal endothelium; and is also controlled by dendritic cells expressing the transcriptional regulatory protein T-bet. None of these play a role in basal trafficking to the lung. With the induction of allergic inflammation in the lung, there is marked recruitment of committed mast cell progenitors to lung and these cells must express α4β7 and α4β1 integrins. Within the lung there is a requirement for expression of VCAM-1 on the endothelium that is regulated by CXCR2, also expressed on the endothelium. There is a further requirement for expression of the CCR2/CCL2 pathways for full recruitment of the mast cell progenitors to the antigen-inflamed lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitamura Y, Yokoyama M, Matsuda H et al. Spleen colony-forming cell as common precursor for tissue mast cells and granulocytes. Nature 1981; 291(5811): 159–160.

    Article  PubMed  CAS  Google Scholar 

  2. 2.Gurish MF, Pear WS, Stevens RL et al. Tissue-regulated differentiation and maturation of a v-abl-immortalized mast cell-committed progenitor. Immunity 1995; 3(2):175–186.

    Article  PubMed  CAS  Google Scholar 

  3. Metcalfe DD, Baram D, Mekori YA. Mast cells Physiol Rev 1997; 77(4): 1033–1079.

    CAS  Google Scholar 

  4. Kitamura Y, Shimada M, Hatanaka K et al. Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 1977; 268(5619):442–443.

    Article  PubMed  CAS  Google Scholar 

  5. Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978; 52(2):447–452.

    PubMed  CAS  Google Scholar 

  6. Nagao K, Yokoro K, Aaronson SA. Continuous lines of basophil/mast cells derived from normal mouse bone marrow. Science 1981; 212(4492):333–335.

    Article  PubMed  CAS  Google Scholar 

  7. Razin E, Cordon-Cardo C, Good RA. Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc Natl Acad Sci USA 1981; 78(4):2559–2561.

    Article  PubMed  CAS  Google Scholar 

  8. Crapper RM, Schrader JW. Frequency of mast cell precursors in normal tissues determined by an in vitro assay: antigen induces parallel increases in the frequency of P cell precursors and mast cells. J Immunol 1983; 131(2):923–928.

    PubMed  CAS  Google Scholar 

  9. Schrader JW, Scollay R, Battye F. Intramucosal lymphocytes of the gut: Lyt-2 and thy-1 phenotype of the granulated cells and evidence for the presence of both T-cells and mast cell precursors. J Immunol 1983; 130(2):558–564.

    PubMed  CAS  Google Scholar 

  10. Guy-Grand D, Dy M, Luffau G et al. Gut mucosal mast cells. Origin, traffic and differentiation. J Exp Med 1984; 160(1):12–28.

    Article  PubMed  CAS  Google Scholar 

  11. Akashi K, Traver D, Miyamoto T et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404(6774):193–197.

    Article  PubMed  CAS  Google Scholar 

  12. Arinobu Y, Iwasaki H, Gurish MF et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 2005; 102(50):18105–18110.

    Article  PubMed  CAS  Google Scholar 

  13. Iwasaki H, Mizuno S, Mayfield R et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 2005; 201(12):1891–1897.

    Article  PubMed  CAS  Google Scholar 

  14. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell1997; 91(5):661–672.

    Google Scholar 

  15. Ohmori K, Luo Y, Jia Y et al. IL-3 induces basophil expansion in vivo by directing granulocyte-monocyte progenitors to differentiate into basophil lineage-restricted progenitors in the bone marrow and by increasing the number of basophil/mast cell progenitors in the spleen. J Immunol 2009; 182(5):2835–2841.

    Article  PubMed  CAS  Google Scholar 

  16. Chen CC, Grimbaldeston MA, Tsai M et al. Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA 2005; 102(32): 11408–11413.

    Article  PubMed  CAS  Google Scholar 

  17. Kawamoto H, Katsura Y. A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol 2009; 30(5):193–200.

    Article  PubMed  CAS  Google Scholar 

  18. Kincade PW, Owen JJ, Igarashi H et al. Nature or nurture? Steady-state lymphocyte formation in adults does not recapitulate ontogeny. Immunol Rev 2002; 187:116–125.

    Article  PubMed  Google Scholar 

  19. Laiosa CV, Stadtfeld M, Graf T. Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol 2006; 24:705–738.

    Article  PubMed  CAS  Google Scholar 

  20. Rodewald HR, Dessing M, Dvorak AM et al. Identification of a committed precursor for the mast cell lineage. Science 1996; 271(5250):818–822.

    Article  PubMed  CAS  Google Scholar 

  21. Du T, Friend DS, Austen KF et al. Tissue-dependent differences in the asynchronous appearance of mast cells in normal mice and in congenic mast cell-deficient mice after infusion of normal bone marrow cells. Clin Exp Immunol 1996; 103(2):316–321.

    Article  PubMed  CAS  Google Scholar 

  22. Furitsu T, Saito H, Dvorak AM et al. Development of human mast cells in vitro. Proc Natl Acad Sci USA 1989; 86(24): 10039–10043.

    Article  PubMed  CAS  Google Scholar 

  23. Kempuraj D, Saito H, Kaneko A et al. Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood 1999; 93(10):3338–3346.

    PubMed  CAS  Google Scholar 

  24. Ochi H, Hirani WM, Yuan Q et al. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J Exp Med 1999; 190(2):267–280.

    Article  PubMed  CAS  Google Scholar 

  25. Kirshenbaum AS, Goff JP, Semere T et al. Demonstration that human mast cells arise from aprogenitor cell populationthat is CD34(+),c-kit(+) and expresses aminopeptidase N (CD13). Blood 1999; 94(7):2333–2342.

    PubMed  CAS  Google Scholar 

  26. Kirshenbaum AS, Kessler SW, Goff JP et al. Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells. J Immunol 1991; 146(5):1410–1415.

    PubMed  CAS  Google Scholar 

  27. Mwamtemi HH, Koike K, Kinoshita T et al. An increase in circulating mast cell colony-forming cells in asthma. J Immunol 2001; 166(7):4672–4677.

    PubMed  CAS  Google Scholar 

  28. Eklund KK, Ghildyal N, Austen KF et al. Mouse bone marrow-derived mast cells (mBMMC) obtained in vitro from mice that are mast cell-deficient in vivo express the same panel of granule proteases as mBMMC and serosal mast cells from their normal littermates. J Exp Med 1994; 180(1):67–73.

    Article  PubMed  CAS  Google Scholar 

  29. Gurish MF, Ghildyal N, McNeil HP et al. Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand. J Exp Med 1992; 175(4):1003–1012.

    Article  PubMed  CAS  Google Scholar 

  30. Tsai M, Takeishi T, Thompson H et al. Induction of mast cell proliferation, maturation and heparin synthesis by the rat c-kit ligand, stem cell factor. Proc of Natl Acad Sci USA 1991; 88(14):6382–6386.

    Article  CAS  Google Scholar 

  31. Galli SJ, Iemura A, Garlick DS et al. Reversible expansion of primate mast cell populations in vivo by stem cell factor. J Clin Invest 1993; 91(1):148–152.

    Article  PubMed  CAS  Google Scholar 

  32. Zhou JS, Xing W, Friend DS et al. Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis. J Exp Med 2007; 204(12):2797–2802.

    Article  PubMed  CAS  Google Scholar 

  33. Hallgren J, Jones TG, Abonia JP et al. Pulmonary CXCR2 regulates VCAM-1 and antigen-induced recruitment of mast cell progenitors. Proc Natl Acad Sci USA 2007; 104(51):20478–20483.

    Article  PubMed  CAS  Google Scholar 

  34. Drew E, Huettner CS, Tenen DG et al. CD34 expression by mast cells: of mice and men. Blood 2005; 106(5):1885–1887.

    Article  PubMed  CAS  Google Scholar 

  35. Drew E, Merkens H, Chelliah S et al. CD34 is a specific marker of mature murine mast cells. Exp Hematol 2002; 30(10):1211–1218.

    Article  PubMed  CAS  Google Scholar 

  36. Schrader JW, Lewis SJ, Clark-Lewis I et al. The persisting (P) cell: histamine content, regulation by a T-cell-derived factor, origin from abone marrow precursor and relationship to mast cells. Proc Natl Acad Sci USA 1981; 78(1):323–327.

    Article  PubMed  CAS  Google Scholar 

  37. Gurish MF, Tao H, Abonia JP et al. Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med 2001; 194(9):1243–1252.

    Article  PubMed  CAS  Google Scholar 

  38. Abonia JP, Austen KF, Rollins BJ et al. Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 2005; 105(11):4308–4313.

    Article  PubMed  CAS  Google Scholar 

  39. Sonoda T, Ohno T, Kitamura Y. Concentration of mast-cell progenitors in bone marrow, spleen and blood of mice determined by limiting dilution analysis. J Cell Physiol 1982; 112(1):136–140.

    Article  PubMed  CAS  Google Scholar 

  40. Gurish MF, Bell AF, Smith TJ et al. Expression of murine beta 7, alpha 4 and beta 1 integrin genes by rodent mast cells. J Immunol 1992; 149(6): 1964–1972.

    PubMed  CAS  Google Scholar 

  41. Yuan Q, Jiang WM, Hollander D et al. Identity between the novel integrin beta 7 subunit and an antigen found highly expressed on intraepithelial lymphocytes in the small intestine. Biochem Biophys Res Commun 1991; 176(3):1443–1449.

    Article  PubMed  CAS  Google Scholar 

  42. Boyce JA, Mellor EA, Perkins B et al. Human mast cell progenitors use alpha4-integrin, VCAM-1 and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions. Blood 2002; 99(8):2890–2896.

    Article  PubMed  CAS  Google Scholar 

  43. Berlin C, Berg EL, Briskin MJ et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993; 74(1):185–195.

    Article  PubMed  CAS  Google Scholar 

  44. Artis D, Humphreys NE, Potten CS et al. Beta7 integrin-deficient mice: delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminth infection. Eur J Immunol 2000; 30(6): 1656–1664.

    Article  PubMed  CAS  Google Scholar 

  45. Kitamura Y, Yokoyama M, Sonoda T et al. Different radiosensitivities of mast-cell precursors in the bone marrow and skin of mice. Rad Res 1983; 93(1):147–156.

    Article  CAS  Google Scholar 

  46. Hallgren J, Gurish MF. Pathways of murine mast cell development and trafficking: tracking the roots and routes of the mast cell. Immunol Rev 2007; 217:8–18.

    Article  PubMed  CAS  Google Scholar 

  47. Reutershan J, Morris MA, Burcin TL et al. Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J Clin Invest 2006; 116(3):695–702.

    Article  PubMed  CAS  Google Scholar 

  48. Shinkai Y, Rathbun G, Lam KP et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68(5):855–867.

    Article  PubMed  CAS  Google Scholar 

  49. Alcaide P, Jones TG, Lord GM et al. Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue. J Exp Med 2007; 204(2):431–439.

    Article  PubMed  CAS  Google Scholar 

  50. Wang J, Fathman JW, Lugo-Villarino G et al. Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J Clin Invest 2006; 116(2):414–421.

    Article  PubMed  CAS  Google Scholar 

  51. Rosenkranz AR, Coxon A, Maurer M et al. Impaired mast cell development and innate immunity in Mac-1 (CD11b/CD18, CR3)-deficient mice. J Immunol 1998; 161(12):6463–6467.

    PubMed  CAS  Google Scholar 

  52. Martelli F, Ghinassi B, Lorenzini R et al. Thrombopoietin inhibits murine mast cell differentiation. Stem Cells 2008; 26(4):912–919.

    Article  PubMed  CAS  Google Scholar 

  53. Ghinassi B, Zingariello M, Martelli F et al. Increased differentiation of dermal mast cells in mice lacking the Mpl gene. Stem Cells Dev 2009; 18(7):1081–1092.

    Article  PubMed  CAS  Google Scholar 

  54. Ammit AJ, Bekir SS, Johnson PR et al. Mast cell numbers are increased in the smooth muscle of human sensitized isolated bronchi. Am J Respir Crit Care Med 1997; 155(3):1123–1129.

    PubMed  CAS  Google Scholar 

  55. Brightling CE, Bradding P, Symon FA et al. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002; 346(22):1699–1705.

    Article  PubMed  Google Scholar 

  56. Zanini A, Chetta A, Saetta M et al. Chymase-positive mast cells play a role in the vascular component of airway remodeling in asthma. J Allergy Clin Immunol 2007; 120(2):329–333.

    Article  PubMed  CAS  Google Scholar 

  57. Ikeda RK, Miller M, Nayar J et al. Accumulation of peribronchial mast cells in amouse model of ovalbumin allergen induced chronic airway inflammation: modulation by immunostimulatory DNA sequences. J Immunol 2003; 171(9):4860–4867.

    PubMed  CAS  Google Scholar 

  58. Yu M, Tsai M, Tam SY et al. Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Invest 2006; 116(6):1633–1641.

    Article  PubMed  CAS  Google Scholar 

  59. Dillon SB, MacDonald TT. Limit dilution analysis of mast cell precursor frequency in the gut epithelium of normal and Trichinella spiralis infected mice. Parasite Immunol 1986; 8(5):503–511.

    Article  PubMed  CAS  Google Scholar 

  60. Abonia JP, Hallgren J, Jones T et al. Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood 2006; 108(5):1588–1594.

    Article  PubMed  CAS  Google Scholar 

  61. Singh B, Shinagawa K, Taube C et al. Strain-specific differences in perivascular inflammation in lungs in two murine models of allergic airway inflammation. Clin Exp Immunol 2005; 141(2):223–229.

    Article  PubMed  CAS  Google Scholar 

  62. Gonzalo JA, Lloyd CM, Kremer L et al. Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T-cells, chemokines and adhesion receptors. J Clin Invest 1996; 98(10):2332–2345.

    Article  PubMed  CAS  Google Scholar 

  63. Briskin M, Winsor-Hines D, Shyjan A et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997; 151(1):97–110.

    PubMed  CAS  Google Scholar 

  64. Xu B, Wagner N, Pham LN et al. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, alpha4betal integrin/VCAM-1 and LFA-1 adhesion pathways. J Exp Med 2003; 197(10):1255–1267.

    Article  PubMed  CAS  Google Scholar 

  65. Oliveira SH, Lukacs NW. Stem cell factor and igE-stimulated murine mast cells produce chemokines (CCL2, CCL17, CCL22) and express chemokine receptors. Inflamm Res 2001; 50(3):168–174.

    Article  PubMed  CAS  Google Scholar 

  66. Taub D, Dastych J, Inamura N et al. Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines. J Immunol 1995; 154(5):2393–2402.

    PubMed  CAS  Google Scholar 

  67. Collington SHJ, Pease JE, Jones T et al. The role of the CCL2/CCR2 axis in mouse mast cell migration in vitro and in vivo. Re-submitted to J Immunol 2010.

    Google Scholar 

  68. Weiler CL, Collington SJ, Hartnell A et al. Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc Natl Acad Sci USA 2007; 104(28):11712–11717.

    Article  Google Scholar 

  69. Weller CL, Collington SJ, Brown JK et al. Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J Exp Med 2005; 201(12):1961–1971.

    Article  PubMed  CAS  Google Scholar 

  70. Jones TG, Hallgren J, Humbles A et al. Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. J Immunol 2009; 183(8):5251–5260.

    Article  PubMed  CAS  Google Scholar 

  71. Noben-Trauth N, Shultz LD, Brombacher F et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T-cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc Natl Acad Sci USA 1997; 94(20):10838–10843.

    Article  PubMed  CAS  Google Scholar 

  72. Jankovic D, Kullberg MC, Noben-Trauth N et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a Th2 cytokine profile. J Immunol 2000; 164(6):3047–3055.

    PubMed  CAS  Google Scholar 

  73. Akbari O, Faul JL, Hoyte EG et al. CD4+ invariant T-cell-receptor+ natural killer T-cells in bronchial asthma. N Engl J Med 2006; 354(11):1117–1129.

    Article  PubMed  CAS  Google Scholar 

  74. Lisbonne M, Diem S, de Castro Keller A et al. Cutting edge: invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 2003; 171(4):1637–1641.

    PubMed  CAS  Google Scholar 

  75. Demoulin JB, Uyttenhove C, Van Roost E et al. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity and growth regulation by IL-9. Mol Cell Biol 1996; 16(9):4710–4716.

    PubMed  CAS  Google Scholar 

  76. Yoshimoto T, Min B, Sugimoto T et al. Nonredundant roles for CDld-restricted natural killer T-cells and conventional CD4+ T-cells in the induction of immunoglobulin E antibodies in response to interleukin 18 treatment of mice. J Exp Med 2003; 197(8):997–1005.

    Article  PubMed  CAS  Google Scholar 

  77. Madden KB, Urban JF Jr, Ziltener HJ et al. Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis. J Immunol 1991; 147(4):1387–1391.

    PubMed  CAS  Google Scholar 

  78. Townsend JM, Fallon GP, Matthews JD et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T-cell development. Immunity 2000; 13(4):573–583.

    Article  PubMed  CAS  Google Scholar 

  79. Mathias CB, Freyschmidt EJ, Caplan B et al. IgE influences the number and function of mature mast cells, but not progenitor recruitment in allergic pulmonary inflammation. J Immunol 2009; 182(4):2416–2424.

    Article  PubMed  CAS  Google Scholar 

  80. Urban JF Jr, Noben-Trauth N, Schopf L et al. Cutting edge: IL-4 receptor expression by nonbone marrow-derived cells is required to expel gastrointestinal nematode parasites. J Immunol 2001; 167(11):6078–6081.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hallgren, J., Gurish, M.F. (2011). Mast Cell Progenitor Trafficking and Maturation. In: Gilfillan, A.M., Metcalfe, D.D. (eds) Mast Cell Biology. Advances in Experimental Medicine and Biology, vol 716. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9533-9_2

Download citation

Publish with us

Policies and ethics