Skip to main content

The Implant-Cement Interface in Total Hip Arthroplasty

  • Chapter
  • First Online:
Bone-Implant Interface in Orthopedic Surgery

Abstract

Despite being in clinical use for more than 40 years, the detailed function of cemented femoral stems is still not completely understood. After insertion into the femur, the behavior of the bone/cement/stem construct can be expected to depend on a number of factors. A fundamental function performed by the bone cement is the transfer and distribution of the stress between the prosthesis and the bone. The success of cemented systems, in the long term, depends on many factors. The prosthesis itself can, depending on its material composition, shape, size, and surface finish, have a complex influence on its surroundings. Bone cement and its structural and mechanical characteristics in particular have a similar influence when combined with different stem designs. Thus, the quality and shape of the materials and interaction at the stem-cement interfaces are of great importance for long-term performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verdonschot N, Huiskes R. Cement debonding process of total hip arthroplasty stems. Clin Orthop. 1997;336:297–307.

    Article  PubMed  Google Scholar 

  2. Thanner J, Freij-Larsson C, Kärrholm J, et al. Evaluation of Boneloc. Chemical and mechanical properties, and a randomized clinical study of 30 total hip arthroplasties. Acta Orthop Scand. 1995;66:207–14.

    Article  PubMed  CAS  Google Scholar 

  3. Anthony PP, Gie GA, Howie CR, Ling RS. Localised endosteal lysis in relation to the femoral component of cemented total hip replacements. J Bone Joint Surg Br. 1997;79B:675–9.

    Google Scholar 

  4. Ebramzadeh E, Normand PL, Sangiorgio SN, et al. Long-term radiographic changes in cemented total hip arthroplasty with six designs of femoral components. Biomaterials. 2000;24:3351–63.

    Article  Google Scholar 

  5. Jergesen HE, Karlen JW. Clinical outcome in total hip arthroplasty using a cemented titanium femoral prosthesis. J Arthroplasty. 2002;17:592–9.

    Article  PubMed  Google Scholar 

  6. Nivbrant B, Kärrholm J, Röhrl S, et al. Bone cement with reduced proportion of monomer in total hip arthroplasty. Preclinical evaluation and randomized study of 47 cases with 5 years’ follow-up. Acta Orthop Scand. 2001;72:572–84.

    Article  PubMed  CAS  Google Scholar 

  7. Espehaug B, Furnes O, Engesæter LB, Havelin LI. 18 years of results with cemented primary hip prostheses in the Norwegian Arthroplasty Register. Concerns about some newer implants. Acta Orthop Scand. 2009;80:402–12.

    Article  Google Scholar 

  8. Hallan H, Espehaug B, Furnes O, et al. Is there still a place for the cemented titanium femoral stem? 10,108 cases from the Norwegian Arthroplasty Register. Acta Orthop Scand. 2012;83:1–6.

    Article  Google Scholar 

  9. Semlitsch M. Titanium alloys for hip joint replacements. Clin Mater. 1987;2:1–13.

    Article  Google Scholar 

  10. Willert HG, Broback LG, Buchhorn GH, et al. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop. 1996;333:51–75.

    PubMed  Google Scholar 

  11. Hallam P, Haddad F, Cobb J. Pain in the well-fixed, aseptic titanium hip replacement. The role of corrosion. J Bone Joint Surg Br. 2004;86B:27–30.

    Google Scholar 

  12. Thomas SR, Shukla D, Latham PD. Corrosion of cemented titanium femoral stems. J Bone Joint Surg Br. 2004;86B:974–8.

    Article  Google Scholar 

  13. Walczak J, Shahgaldi F, Heatley F. In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. Biomaterials. 1998;19:229–37.

    Article  PubMed  CAS  Google Scholar 

  14. Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71.

    Article  PubMed  CAS  Google Scholar 

  15. Kärrholm J, Nivbrant B, Thanner J, et al. Radiostereometric evaluation of hip implant design and surface finish. Scientific Exhibition, AAOS, Orlando; 2000.

    Google Scholar 

  16. Gill HS, Alfaro-Adrian J, Alfaro-Adrian C, et al. The effect of anteversion on femoral component stability assessed by radiostereometric analysis. J Arthroplasty. 2002;17:997–1005.

    Article  PubMed  CAS  Google Scholar 

  17. Olofsson K, Digas G, Kärrholm J. Influence of design variations on early migration of a cemented stem in THA. Clin Orthop. 2006;448:67–72.

    Article  PubMed  Google Scholar 

  18. Kadar T, Hallan G, Aamodt A, et al. A randomized study on migration of the Spectron EF and the Charnley flanged 40 cemented femoral components using radiostereometric analysis at 2 years. Acta Orthop Scand. 2011;82:538–44.

    Article  Google Scholar 

  19. Sylvain GM, Kassab S, Coutts R, Santore R. Early failure of a roughened surface, precoated femoral component in total hip arthroplasty. J Arthroplasty. 2001;16:141–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kalairajah Y, Molloy S, Patterson M. The effect of femoral stem size on failure rates in total hip replacement cemented with Boneloc. Acta Orthop Belg. 2002;68:33–6.

    PubMed  CAS  Google Scholar 

  21. Thien TM, Kärrholm J. Design-related risk factors for revision of primary cemented stems. Analysis of 3 common stems in the Swedish Hip Arthroplasty Register. Acta Orthop Scand. 2010;81:407–12.

    Article  Google Scholar 

  22. Bourne RB, Oh I, Harris WH. Femoral cement pressurization during total hip arthroplasty: the role of different femoral stems with reference to stem size and shape. Clin Orthop. 1984;183:12–6.

    PubMed  Google Scholar 

  23. Huiskes R, Verdonschot N, Nivbrant B. Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clin Orthop. 1998;355:103–12.

    Article  PubMed  Google Scholar 

  24. Harris WH. Is it advantageous to strengthen the cement metal interface and use a collar for cemented femoral components of total hip replacements? Clin Orthop. 1992;285:67–72.

    PubMed  Google Scholar 

  25. Schmalzried TP, Harris WH. Hybrid total hip replacement: a 6.5 year follow-up study. J Bone Joint Surg Br. 1993;75B:608–15.

    Google Scholar 

  26. Goldberg VM, Ninomiya J, Kelly G, Kraay M. Hybrid total hip arthroplasty: a 7- to 11-year follow-up. Clin Orthop. 1996;333:147–54.

    PubMed  Google Scholar 

  27. Callaghan JJ, Tooma GS, Olejniczak JP, et al. Primary hybrid total hip arthroplasty: an interim follow-up. Clin Orthop. 1996;333:118–25.

    PubMed  Google Scholar 

  28. Collis DK, Mohler CG. Loosening rates and bone lysis with rough finished and polished stems. Clin Orthop. 1998;355:113–22.

    Article  PubMed  Google Scholar 

  29. Dowd JE, Cha CW, Trakru S, et al. Failure of total hip arthroplasty with a precoated prosthesis: 4-toll-year results. Clin Orthop. 1998;355:123–36.

    Article  PubMed  Google Scholar 

  30. Ong A, Wong KL, Lai M, et al. Early failure of precoated femoral components in primary total hip arthroplasty. J Bone Joint Surg Am. 2002;84A:786–92.

    Google Scholar 

  31. Fowler J, Gie GA, Lee AJ, Ling RS. Experience with Exeter Hip since 1970. Orthop Clin N Am. 1998;19:477–89.

    Google Scholar 

  32. Milles AW. A preliminary report on stem/cement interface and its influence on bone/cement interface. In: Older J, editor. Implant bone interface. Berlin: Spinger; 1990.

    Google Scholar 

  33. Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res. 1997;38:155–82.

    Article  PubMed  CAS  Google Scholar 

  34. Yoon YS, Oxland TR, Hodgson AJ, et al. Mechanical aspects of degree of cement bonding and implant wedge effect. Clin Biomech. 2008;23:1141–7.

    Article  Google Scholar 

  35. Bundy KJ, Penn RW. The effect of surface preparation on metal/bone cement interfacial strength. J Biomed Mater Res. 1987;21:773–805.

    Article  PubMed  CAS  Google Scholar 

  36. Chen CQ, Scott W, Barker TM. Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces. J Biomed Mater Res. 1999;48(4):440–6.

    Article  PubMed  CAS  Google Scholar 

  37. Crowninshield RD, Jennings JD, Laurent ML, Maloney WJ. Cemented femoral component surface finish mechanics. Clin Orthop. 1998;355:90–102.

    Article  PubMed  Google Scholar 

  38. Verdonschot N, Huiskes R. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Biomaterials. 1998;19:1773–9.

    Article  PubMed  CAS  Google Scholar 

  39. Verdonschot N, Tanck E, Huiskes R. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding. J Biomed Mater Res. 1998;42:554–9.

    Article  PubMed  CAS  Google Scholar 

  40. Collis DK, Mohler CG. Comparison of clinical outcomes in total hip arthroplasty using rough and polished cemented stems with essentially the same geometry. J Bone Joint Surg Am. 2002;84A:586–92.

    Google Scholar 

  41. Race A, Miller MA, Ayers DC, et al. The influence of surface roughness on stem-cement gaps. J Bone Joint Surg Br. 2002;84B:1199–204.

    Article  Google Scholar 

  42. von Knoch M, Bluhm A, Morlock M, von Foerster G. Absence of surface roughness changes after insertion of one type of matte cemented femoral component during 2 to 15 years. J Arthroplasty. 2003;18:471–7.

    Article  Google Scholar 

  43. Garellick G, Kärrholm J, Rogmark C. Annual report 2010. Swedish Hip Arthroplasty Register. 2011; http://www.shpr.se/Libraries/Documents/AnnualReport-2010-3.sflb.ashx.

  44. Howie DW, Middleton RG, Costi K. Loosening of matt and polished cemented femoral stems. J Bone Joint Surg Br. 1998;80B:573–6.

    Article  Google Scholar 

  45. Hinrichs F, Kuhl M, Boudriot U, Griss P. A comparative clinical outcome evaluation of smooth (10–13 year results) versus rough surface finish (5–8 year results) in an otherwise identically designed cemented titanium alloy stem. Arch Orthop Trauma Surg. 2003;123:268–72.

    Article  PubMed  CAS  Google Scholar 

  46. Della Valle AG, Zoppi A, Peterson MG, Salvati EA. A rough surface finish adversely affects the survivorship of a cemented femoral stem. Clin Orthop. 2005;436:158–63.

    PubMed  Google Scholar 

  47. Ritter MA, Harty LD, Lorenzo RA, Lutgring JD. Total hip arthroplasty with satin finish, tapered stems. Orthopedics. 2005;28:1454–6.

    PubMed  Google Scholar 

  48. Datir SP, Kurta IC, Wynn-Jones CH. Ten-year survivorship of rough-surfaced femoral stem with geometry similar to Charnley femoral stem. J Arthroplasty. 2006;21:392–7.

    Article  PubMed  CAS  Google Scholar 

  49. Firestone DE, Callaghan JJ, Liu SS, et al. Total hip arthroplasty with a cemented, polished, collared femoral stem and a cementless acetabular component. A follow-up study at a minimum of ten years. J Bone Joint Surg Am. 2007;89A:126–32.

    Article  Google Scholar 

  50. Malchau H, Herberts P, Ahnfelt L. Prognosis of total hip replacement in Sweden. Follow-up of 92,675 operations performed 1978–1990. Acta Orthop Scand. 1993;64:497–506.

    Article  PubMed  CAS  Google Scholar 

  51. Sanchez-Sotelo J, Berry DJ, Harmsen S. Long-term results of use of a collared matte-finished femoral component fixed with second-generation cementing techniques. A fifteen-year-median follow-up study. J Bone Joint Surg Am. 2002;84A:1636–41.

    Google Scholar 

  52. Meneghini RM, Feinberg JR, Capello WN. Primary hybrid total hip arthroplasty with a roughened femoral stem: integrity of the stem-cement interface. J Arthroplasty. 2003;18:299–307.

    Article  PubMed  Google Scholar 

  53. Kärrholm J, Herberts P. Annual report 2006 Swedish total hip arthroplasty register. www.shpr.se.

  54. Callaghan JJ, Liu SS, Firestone DE, et al. Total hip arthroplasty with cement and use of a collared matte-finish femoral component: nineteen to twenty-year follow-up. J Bone Joint Surg Am. 2008;90A:299–306.

    Article  Google Scholar 

  55. Crawford RW, Evans M, Ling RS, Murray DW. Fluid flow around model femoral components of differing surface finishes – In vitro investigations. Acta Orthop Scand. 1999;70:589–95.

    Article  PubMed  CAS  Google Scholar 

  56. Ling RS, Lee AJ. Porosity reduction in acrylic cement is clinically irrelevant. Clin Orthop. 1998;355:249–53.

    Article  PubMed  Google Scholar 

  57. Wang JS, Franzιn H, Lidgren L. Interface gap implantation of a cemented femoral stem in pigs. Acta Orthop Scand. 1999;70:229–33.

    Article  Google Scholar 

  58. Verdonschot N, Huiskes R. Acrylic cement creeps but does not allow much subsidence of femoral stems. J Bone Joint Surg Br. 1997;79B:665–9.

    Article  Google Scholar 

  59. Jasty M, Maloney WJ, Bragdon CR, et al. The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg Br. 1991;73B:551–8.

    Google Scholar 

  60. Mohler CG, Callaghan JJ, Collis DK, et al. Early loosening of the femoral component at the cement-prosthesis interface after total hip replacement. J Bone Joint Surg Am. 1995;77A:1315–22.

    Google Scholar 

  61. Callaghan JJ, Forest EE, Sporer SM, et al. Total hip arthroplasty in the young adult. Clin Orthop. 1997;344:257–62.

    PubMed  Google Scholar 

  62. Howell JR, Blunt LA, Doyle C, et al. In vivo surface wear mechanisms of femoral components of cemented total hip arthroplasties: the influence of wear mechanism on clinical outcome. J Arthroplasty. 2004;19:88–101.

    Article  PubMed  Google Scholar 

  63. Digas G, Kärrholm J, Thanner J. Addition of fluoride to acrylic bone cement does not improve fixation of a total hip arthroplasty stem. Clin Orthop. 2006;448:58–66.

    Article  PubMed  Google Scholar 

  64. Norman TL, Saligrama VC, Hustosky KT, et al. Axisymmetric finite element analysis of a debonded total hip stem with an unsupported distal tip. J Biomech Eng. 1996;118:399–404.

    Article  PubMed  CAS  Google Scholar 

  65. Shen G. Femoral stem fixation: an engineering interpretation of the long-term outcome of Charnley and Exeter stems. J Bone Joint Surgery Br. 1998;80B:754–6.

    Article  Google Scholar 

  66. Räber DA, Czaja S, Morscher EW. Fifteen-year results of the Müller CoCrNiMo Straight Stem. Arch Orthop Trauma Surg. 2001;121:38–42.

    Article  PubMed  Google Scholar 

  67. Berli BJ, Schäfer D, Morscher EW. Ten-year survival of the MS-30 matt-surfaced cemented stem. J Bone Joint Surg Br. 2005;87B:928–33.

    Google Scholar 

  68. Lindahl H, Malchau H, Herberts P, Garellick G. Periprosthetic femoral fractures classification and demographics of 1049 periprosthetic femoral fractures from the Swedish National Hip Arthroplasty Register. J Arthroplasty. 2005;20:857–65.

    Article  PubMed  Google Scholar 

  69. Breusch SJ, Lukoschek M, Kreutzer J, et al. Dependency of cement mantle thickness on femoral stem design and centralizer. J Arthroplasty. 2001;16:648–57.

    Article  PubMed  CAS  Google Scholar 

  70. Ebramzadeh E, Sangiorgio SN, Longjohn DB, et al. Initial stability of cemented femoral stems as a function of surface finish, collar, and stem size. J Bone Joint Surg Am. 2004;86A:106–15.

    Google Scholar 

  71. Maloney WJ, Keeney JA. Leg length discrepancy after total hip arthroplasty. J Arthroplasty. 2004;19:108–10.

    Article  PubMed  Google Scholar 

  72. Ramaniraka NA, Rakotomanana LR, Leyvraz PF. The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. J Bone Joint Surg Br. 2000;82B:297–303.

    Article  Google Scholar 

  73. Carlsson AS, Gentz CF, Linder L. Localized bone resorption in the femur in mechanical failure of cemented total hip arthroplasties. Acta Orthop Scand. 1983;54:396–402.

    Article  PubMed  CAS  Google Scholar 

  74. Garellick G, Malchau H, Regner H, et al. The Charnley versus the Spectron hip prosthesis: radiographic evaluation of a randomized prospective study of 2 different hip implants. J Arthroplasty. 1999;14:414–25.

    Article  PubMed  CAS  Google Scholar 

  75. Lee AJC, Ling RSM, Vangala SS. Some clinically relevant variables affecting the mechanical behaviour of bone cement. Arch Orthop Traumat Surg. 1978;92:1–18.

    Article  CAS  Google Scholar 

  76. Verdonschot N, Huiskes R. Creep, properties of three low temperature-curing bone cements: a preclinical assessment. J Biomed Mater Res. 2000;53:498–504.

    Article  PubMed  CAS  Google Scholar 

  77. Norman TL, Williams M, Gruen TA, Blaha JD. Influence of delayed injection time on the creep behaviour of acrylic bone cement. J Biomed Mater Res. 1997;37:151–4.

    Article  PubMed  CAS  Google Scholar 

  78. Waanders D, Janssen D, Mann KA, Verdonschot N. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface. J Biomech. 2010;16(43):3028–34.

    Article  Google Scholar 

  79. Muller SD, Green SM, McCaskie AW. The dynamic volume changes of polymerising polymethyl methacrylate bone cement. Acta Orthop Scand. 2002;73:684–7.

    PubMed  Google Scholar 

  80. Draenert K, Draenert Y, Garde U, Ulrich C. Manual of cementing technique. Berlin/Heidelberg/New York/Tokyo: Springer; 1999. p. 26–8.

    Book  Google Scholar 

  81. Bishop NE, Ferguson S, Tepic S. Porosity reduction in bone cement at the cement-stem interface. J Bone Joint Surg Br. 1996;78B:349–56.

    Google Scholar 

  82. Jafri AA, Green SM, Partington PF, et al. Pre-heating of components in cemented total hip arthroplasty. J Bone Joint Surg Br. 2004;86B:1214–9.

    Article  Google Scholar 

  83. Iesaka K, Jaffe WL, Kummer FJ. Effects of preheating of hip prostheses on the stem-cement interface. J Bone Joint Surg Am. 2003;85A:421–7.

    Google Scholar 

  84. Mau H, Schelling K, Heisel C, et al. Comparison of different vacuum mixing systems and bone cements with respect to reliability, porosity and bending strength. Acta Orthop Scand. 2004;75:160–72.

    Article  PubMed  Google Scholar 

  85. Davies JP, Kawate K, Harris WH. Effect of interfacial porosity on the torsional strength of the cement-metal interface. 41st annual meeting orthopedic research society, Orlando; 1999. p. 713.

    Google Scholar 

  86. Verdonschot N. Biomechanical failure scenarios for cemented total hip replacement. 1995. Thesis. Ph.D.

    Google Scholar 

  87. Freeman MA, Plante-Bordeneuve P. Early migration and late aseptic failure of proximal femoral prostheses. J Bone Joint Surg Br. 1994;76B:432–8.

    Google Scholar 

  88. Krismer M, Stöckl B, Fischer M, et al. Early migration predicts late aseptic failure of hip sockets. J Bone Joint Surg Br. 1996;78B:422–6.

    Google Scholar 

  89. Kärrholm J, Borssén B, Löwenhielm G, Snorrason F. Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br. 1994;76B:912–7.

    Google Scholar 

  90. Kärrholm J, Malchau H, Snorrason F, Herberts P. Micromotion of femoral stems in total hip arthroplasty. A randomized study of cemented, hydroxyapatite-coated, and porous-coated stems with roentgen stereophotogrammetric analysis. J Bone Joint Surg Am. 1994;76A:1692–705.

    Google Scholar 

  91. Nivbrant B, Kärrholm J, Soderlund P. Increased migration of the SHP prosthesis: radiostereometric comparison with the Lubinus SP2 design in 40 cases. Acta Orthop Scand. 1999;70:569–77.

    Article  PubMed  CAS  Google Scholar 

  92. Derbyshire B, Porter ML. A study of the Elite Plus femoral component using radiostereometric analysis. J Bone Joint Surg Br. 2007;89B:730–5.

    Google Scholar 

  93. Glyn-Jones S, Polgár K, Hicks J, et al. RSA-measured inducible micromotion and interface modeling with finite element methods. Clin Orthop. 2006;448:98–104.

    Article  PubMed  CAS  Google Scholar 

  94. Stefánsdóttir A, Franzén H, Johnsson R, et al. Movement pattern of the Exeter femoral stem A radiostereometric analysis of 22 primary hip arthroplasties followed for 5 years. Acta Orthop Scand. 2004;75:408–14.

    Article  PubMed  Google Scholar 

  95. Sundberg M, Besjakov J, von Schewelow T, Carlsson A. Movement patterns of the C-stem femoral component: an RSA study of 33 primary total hip arthroplasties followed for two years. J Bone Joint Surg Br. 2005;87B:1352–6.

    Google Scholar 

  96. Thien TM, Thanner J, Kärrholm J. Randomized comparison between 3 surface treatments of a single anteverted stem design: 84 hips followed for 5 years. J Arthroplasty. 2010;25:437–44.

    Article  PubMed  Google Scholar 

  97. Catani F, Ensini A, Leardini A, et al. Migration of cemented stem and restrictor after total hip arthroplasty: a radiostereometry study of 25 patients with Lubinus SP II stem. J Arthroplasty. 2005;20:244–9.

    Article  PubMed  Google Scholar 

  98. Lindahl H, Garellick G, Regnér H, et al. Three hundred and twenty-one periprosthetic femoral fractures. J Bone Joint Surg Am. 2006;88A:1215–22.

    Article  Google Scholar 

  99. Leonardsson O, Kärrholm J, Åkesson K, et al. Higher risk of re-operation for bipolar and uncemented hemiarthroplasty. Acta Orthop. 2012;83:459–66.

    Google Scholar 

  100. Graves S, Davidson D, de Steiger R. Annual report 2011. AOA National Joint Replacement Registry. 2011. http://www.dmac.adelaide.edu.au/aoanjrr/documents/AnnualReports2011/AnnualReport-2011-WebVersion.pdf.

  101. Furnes O, Gjertsen J E. Annual report 2011. Norwegian Arthroplasty Register/Norwegian Hip Fracture Register. http://nrlweb.ihelse.net/Rapporter/Rapport2011.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Digas MD, DSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Digas, G., Kärrholm, J. (2014). The Implant-Cement Interface in Total Hip Arthroplasty. In: Karachalios, T. (eds) Bone-Implant Interface in Orthopedic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-5409-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5409-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5408-2

  • Online ISBN: 978-1-4471-5409-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics