Skip to main content

Protein Misfolding and Potential Therapeutic Treatments in Inherited Retinopathies

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by progressive peripheral vision loss that can subsequently lead to central vision loss. RP is one of the most common causes of registered visual handicap among those of the working age in developed countries, and currently it is estimated to affect 1 in 3,500 people worldwide. At the genetic level, RP is one of the most heterogeneous inherited conditions, segregating in autosomal dominant, recessive, or X-linked recessive modes, with approximately 40 genes having been implicated in the disease pathology (http://www.sph.uth.tmc.edu/RetNet). To date, there is a growing list of destabilizing mutations within retinal-specific or nonspecific genes (e.g., RHO, RPGR, RS1, BBS6, AIPL1, RDS-peripherin, and IMPDH1, etc.) that have been found to cause proteins to misfold and become aggregation-prone with subsequent loss of normal protein functions. In this minireview, we will briefly explore the role protein misfolding plays as a disease mechanism in autosomal dominant RP and also highlight potential therapeutic strategies for inhibiting protein aggregation in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978

    Article  PubMed  CAS  Google Scholar 

  • Aherne A, Kennan A, Kenna PF et al (2004) On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa. Hum Mol Genet 13:641–650

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:S18–S25

    Article  Google Scholar 

  • Bartolini M, Andrisano V (2010) Strategies for the inhibition of protein aggregation in human diseases. ChemBioChem 11:1018–1035

    Article  PubMed  CAS  Google Scholar 

  • Bowne SJ, Sullivan LS, Blanton SH et al (2002) Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 11:559–568

    Article  PubMed  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  PubMed  CAS  Google Scholar 

  • Conley SM, Stricker HM, Naash MI (2010) Biochemical analysis of phenotypic diversity associated with mutations in codon 244 of the retinal degeneration slow gene. Biochemistry 49:905–911

    Article  PubMed  CAS  Google Scholar 

  • Dryja TP, McGee TL, Reichel E et al (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366

    Article  PubMed  CAS  Google Scholar 

  • Farrar GJ, Kenna P, Jordan SA et al (1991) A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature 354: 478–480

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk MS, Knox T, LaVail MM et al (2010)Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci USA 107:5961–5966

    Article  PubMed  CAS  Google Scholar 

  • Guisbert E, Yura T, Rhodius VA (2008) Convergence of molecular, modelling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nature Struct Mol Biol 16:574–581

    Article  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y (1999a) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10:717–721

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Takeda A, Hsu LJ (1999b) Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J Biol Chem 274:28849–28852

    Article  PubMed  CAS  Google Scholar 

  • Hiroyama S, Yamazaki Y, Kitamura A (2007) MKKS is a centrosome-shuttling protein degraded by disease-causing mutations via CHIP-mediated ubiquitination. Mol Biol Cell 19:899–911

    Article  Google Scholar 

  • Illing ME, Rajan RS, Bence NF (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277:34150–34160

    Article  PubMed  CAS  Google Scholar 

  • Kennan A, Aherne A, Palfi A et al (2002) Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(2/2) mice. Hum Mol Genet 11, 547–557

    Article  PubMed  CAS  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly M, Palfi A, Chadderton N et al (2007) RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81:127–135

    Article  PubMed  Google Scholar 

  • Olsson JE, Gordon JW, Pawlyk BS et al (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9:815–830

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Yamada J (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97:115–115

    Article  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signalling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Raichur A, Vali S, Gorin F (2006) Dynamic modelling of alpha-synuclein aggregation for the sporadic and genetic forms of Parkinson’s disease. Neuroscience 142:859–870

    Article  PubMed  CAS  Google Scholar 

  • Rajan RS, Kopito RR (2005) Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. J Biol Chem 280:1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Rocha S, Cardoso I, Borner H (2009) Design and biological activity of beta-sheet breaker peptide conjugates. Biochem Biophys Res Commun 380:397–401

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17.49

    Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein degradation pathways in neurodegeneration. Nature 443:780–786

    Article  PubMed  CAS  Google Scholar 

  • Saliba RS, Munro PMG, Luthert PJ (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918

    PubMed  CAS  Google Scholar 

  • Sittler A, Lurz R, Lueder G et al (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Sloan LA, Fillmore MC, Churcher I (2009) Small-molecule modulation of cellular chaperones to treat protein misfolding disorders. Curr Opin Drug Discov Dev 12:666–681

    CAS  Google Scholar 

  • Soto C, Kascsak RJ, Saborio GP (2000) Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 355:192–197

    Article  PubMed  CAS  Google Scholar 

  • Surguchev A, Surguchov A (2009) Conformational diseases: Looking into the eyes. Brain Res Bull 81:12–24

    Article  Google Scholar 

  • Tam LC, Kiang AS, Campbell M et al (2010) Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum Mol Genet 19:4421–4436

    Article  PubMed  CAS  Google Scholar 

  • Tam LC, Kiang AS, Kennan A et al (2008) Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum Mol Genet 17:2084–2100

    Article  PubMed  CAS  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL et al (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski T, Sadowski M (2008) Preventing beta-amyloid fibrillization and deposition: beta-sheet breakers and pathological chaperone inhibitors. BMC Neurosci 9:S5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Ocular Genetics Unit at TCD is supported by grants from Science Foundation Ireland (07-IN.1.B1778); The MRC/HRB (FB06HUM); The Wellcome Trust (083866/2/07/2): Enterprise Ireland (PC/2008/0006); Fighting Blindness Ireland (FB09HUM); IRCSET (G30364/G30409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence C. S. Tam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Tam, L.C.S. et al. (2012). Protein Misfolding and Potential Therapeutic Treatments in Inherited Retinopathies. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_72

Download citation

Publish with us

Policies and ethics