Skip to main content

Enucleation, Evisceration, Secondary Orbital Implantation

  • Chapter
  • First Online:
Smith and Nesi’s Ophthalmic Plastic and Reconstructive Surgery

Abstract

Loss of an eye to tumor, trauma, or end stage ocular disease is a devastating condition. There is a loss of binocular vision with a reduced field of vision and loss of depth perception. Job limitations are often a result of lost binocularity, and affected individuals may experience a sense of facial disfigurement and poor self-esteem. The psychological trauma to the patient from loss of the eye may be worse than the physical disability in some instances. Few operations in ophthalmic surgery requires as much compassion on the part of the ophthalmologist as that needed to counsel a patient preparing to undergo removal of an eye. The anophthalmic surgeon must outline expected postoperative care and appearance, review potential problems, and provide emotional assistance in returning the patient to a productive life. Since eye contact is such an essential part of human interaction, it is extremely important for the artificial eye patient to maintain a natural, normal appearing prosthetic eye.

The authors of this study do not have a commercial or proprietary interest in any of the products reviewed in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gougelmann HP. The evolution of the ocular motility implant. Int Ophthalmol Clin. 1976;10:689–711.

    Google Scholar 

  2. Luce CM. A short history of enucleation. Int Ophthalmol Clin. 1970;10:681–7.

    Google Scholar 

  3. Cutler NL. A basket type of implant for use after enucleation. Arch Ophthalmol. 1946;35:71–4.

    Article  CAS  Google Scholar 

  4. Grinsdale H. Notes on early case of Mules’ operation. Br J Ophthalmol. 1919;8:452–6.

    Article  Google Scholar 

  5. Bartisch G. Ophthalmodouleica oder Augendienst, Dresden, 1583. In: Wood CA, editor. A system of ophthalmic operations. Chicago: Cleveland Press; 1911. p. 511.

    Google Scholar 

  6. Kelley JJ. History of ocular prosthesis. Int Ophthalmol Clin. 1970;10:713.

    Google Scholar 

  7. Hirshberg J. The history of ophthalmology, volume 5. The renaissance of ophthalmology in the 18th century, (part 3). The first half of the 19th century (part 1). Bonn: JP Wayenborgh/Verlag; 1985. p. 366.

    Google Scholar 

  8. Rudeman Jr AD. Modified Burch type evisceration with scleral implant. Am J Ophthalmol. 1960;49:41–4.

    Google Scholar 

  9. Witteman GJ, Scott R. Enucleation and evisceration. In: Peyman GA, Sanders DR, Goldberg MF, editors. Principles and practice of ophthalmology. Philadelphia: WB Saunders; 1980.

    Google Scholar 

  10. King Jr JH, Wadsworth JAC. An atlas of ophthalmic surgery. 3rd ed. Philadelphia: JB Lippincott; 1981.

    Google Scholar 

  11. Mules PH. Evisceration of the globe, with artificial vitreous. Trans Ophthalmol Soc UK. 1885;5:200–6.

    Google Scholar 

  12. Allen TD. Guist’s bone spheres. Am J Ophthalmol. 1930;13:226–30.

    Google Scholar 

  13. McCoy LL. Guist bone spheres. Am J Ophthalmol. 1932;15:960–3.

    Google Scholar 

  14. Spaeth EB. The principles and practices of ophthalmic surgery. In: Malvern PA, editor. Lea and Feabiger; 1941. pp. 127–142.

    Google Scholar 

  15. Ruedemann AD. Plastic eye implants. Am J Ophthalmol. 1946;29:947–51.

    CAS  PubMed  Google Scholar 

  16. Cutler NL. A universal type integrated implant. Am J Ophthalmol. 1949;32:253–8.

    CAS  PubMed  Google Scholar 

  17. Allen JH, Allen L. A buried muscle cone implant: I. Development of a tunnelled hemispherical type. Arch Ophthalmol. 1950;43:879–90.

    Article  CAS  Google Scholar 

  18. Allen LH, Ferguson III EC, Braley AE. A quasi integrated buried muscle cone implant with good motility and advantages for prosthetic filling. Trans Am Acad Ophthalmol Otolaryngol. 1960;64:272–8.

    CAS  PubMed  Google Scholar 

  19. Spivey BE, Allen LH, Burns CA. The Iowa enucleation implant: a ten year evaluation of techniques and results. Am J Ophthalmol. 1969;67:171–81.

    CAS  PubMed  Google Scholar 

  20. Jordan DR, Anderson RL, Nerad JA, Allen L. A preliminary report on the universal implant. Arch Ophthalmol. 1987;105:1726–31.

    Article  CAS  PubMed  Google Scholar 

  21. Jordan DR, Anderson RL. The universal implant as an evisceration implant. Ophthalmic Plast Reconstr Surg. 1997;13:1–7.

    Article  CAS  Google Scholar 

  22. Soll DB. Expandable orbital implants. In: Turtz A, editor. Proceedings of the centennial symposium, Manhattan Eye, Ear, and Throat Hospital, Vol I: Ophthalmology. St Louis: Mosby; 1969. pp. 197–202.

    Google Scholar 

  23. Hornblass A, Biesman BS, Eviatar JA. Current techniques of enucleation: a survey of 5,439 intraorbital implants and a review of the literature. Ophthalmic Plast Reconstr Surg. 1995;11:77–88.

    Article  CAS  Google Scholar 

  24. Perry AC. Advances in enucleation. Ophthalmic Plast Reconstr Surg. 1991;4:173–82.

    Google Scholar 

  25. Dutton JJ. Coralline hydroxyapatite as an ocular implant. Ophthalmology. 1991;98:370–7.

    Article  CAS  PubMed  Google Scholar 

  26. Nunery WR, Heinz GW, Bonnin JM, et al. Exposure rate of hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthalmic Plast Reconstr Surg. 1993;9:96–104.

    Article  CAS  Google Scholar 

  27. Goldberg RA, Holds JB, Ebrahimpour J. Exposed hydroxyapatite orbital implants: report of six cases. Ophthalmology. 1992;99:831–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kim YD, Goldberg RA, Shorr N, et al. Management of exposed hydroxyapatite orbital implants. Ophthalmology. 1994;101:1709–15.

    Article  CAS  PubMed  Google Scholar 

  29. Remulla HD, Rubin PAD, Shore JW, et al. Complications of porous spherical orbital implants. Ophthalmology. 1995;102:586–93.

    Article  CAS  PubMed  Google Scholar 

  30. Oestreicher JH, Liu E, Berkowitz M. Complications of hydroxyapatite orbital implants: a review of 100 consecutive cases and a comparison of Dexon mesh (polyglycolic acid) with scleral wrapping. Ophthalmology. 1997;104:324–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jordan DR, Brownstein S, Jolly SS. Abscessed hydroxyapatite orbital implants: a report of two cases. Ophthalmology. 1996;103:1784–7.

    Article  CAS  PubMed  Google Scholar 

  32. Yoon JS, Lew H, Kim SJ, et al. Exposure rate of hydroxyapatite orbital implants. Ophthalmology. 2008;115:566–72.

    Article  PubMed  Google Scholar 

  33. Shoamanesh A, Pang N, Oestreicher JH. Complications of orbital implants: a review of 542 patients who have undergone orbital implantation and 275 subsequent peg placements. Orbit. 2007;25:173–82.

    Article  Google Scholar 

  34. Custer PL, Trinkaus KM. Porous implant exposure: incidence, management, and morbidity. Ophthalmic Plast Reconstr Surg. 2007;23:1–7.

    Article  Google Scholar 

  35. Jordan DR, Klapper SR, Gilberg SM. The use of vicryl mesh in 200 porous orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:53–61.

    Article  Google Scholar 

  36. Wang JK, Liao SL, Lai PC, et al. Prevention of exposure of porous orbital implants following enucleation. Am J Ophthalmol. 2007;143:61–7.

    Article  PubMed  Google Scholar 

  37. Mawn L, Jordan DR, Gilberg S. Scanning electron microscopic examination of porous orbital implants. Can J Ophthalmol. 1998;33:203–9.

    CAS  PubMed  Google Scholar 

  38. Jordan DR, Munro SM, Brownstein S, et al. A synthetic hydroxyapatite implant: the so-called counterfeit implant. Ophthalmic Plast Reconstr Surg. 1998;14(4):244–9.

    Article  CAS  Google Scholar 

  39. Jordan DR, Bawazeer A. Experience with 120 synthetic hydroxyapatite implants (FCI3). Ophthalmic Plast Reconstr Surg. 2001;17:184–90.

    Article  CAS  Google Scholar 

  40. Jordan DR, Pelletier C, Gilberg S, et al. A new variety of hydroxyapatite: the Chinese implant. Ophthalmic Plast Reconstr Surg. 1999;15:420–4.

    Article  CAS  Google Scholar 

  41. Jordan DR, Hwang I, McEachren TM, et al. Brazilian hydroxyapatite implant. Ophthalmic Plast Reconstr Surg. 2000;16:363–9.

    Article  CAS  Google Scholar 

  42. Jordan DR, Brownstein S, Gilberg S, et al. Investigation of a bioresorbable orbital implant. Ophthalmic Plast Reconstr Surg. 2002;18:342–8.

    Article  Google Scholar 

  43. Klett A, Guthoff R. Muscle pedunculated scleral flaps. A microsurgical modification to improve prosthesis motility. Ophthalmologe. 2003;100:449–52.

    CAS  PubMed  Google Scholar 

  44. Blaydon SM, Shepler TR, Neuhaus RW, et al. The porous polyethylene (Medpor) spherical orbital implant: a retrospective study of 136 cases. Ophthalmic Plast Reconstr Surg. 2003;19:364–71.

    Article  Google Scholar 

  45. Karesh JW, Dresner SC. High-density porous polyethylene (Medpor) as a successful anophthalmic socket implant. Ophthalmology. 1994;101:1688–95.

    Article  CAS  PubMed  Google Scholar 

  46. Rubin PA, Popham J, Rumelt S, et al. Enhancement of the cosmetic and functional outcome of enucleation with the conical orbital implant. Ophthalmology. 1998;105:919–25.

    Article  CAS  PubMed  Google Scholar 

  47. Anderson RL, Yen MT, Lucci LM, et al. The quasi-integrated porous polyethylene orbital implant. Ophthalmic Plast Reconstr Surg. 2002;18:50–5.

    Article  Google Scholar 

  48. Naik MN, Murthy RK, Honavar SG. Comparison of vascularization of Medpor and Medpor-Plus orbital implants: a prospective, randomized study. Ophthalmic Plast Reconstr Surg. 2007;23:463–7.

    Article  Google Scholar 

  49. Mawn LA, Jordan DR, Gilberg S. Proliferation of human fibroblasts in vitro after exposure to orbital implants. Can J Ophthalmol. 2001;36:245–51.

    CAS  PubMed  Google Scholar 

  50. Marx DP, Vagefi MR, Bearden WH, et al. The quasi-integrated porous polyethylene implant in pediatric patients enucleated for retinoblastoma. Orbit. 2008;27:403–6.

    Article  PubMed  Google Scholar 

  51. Chuo JY, Dolman PJ, Ng TL, et al. Clinical and histopathologic review of 18 explanted porous polyethylene orbital implants. Ophthalmology. 2009;116:349–54.

    Article  PubMed  Google Scholar 

  52. Alwitry A, West S, King J, et al. Long-term follow-up of porous polyethylene spherical implants after enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2007;23:11–5.

    Article  CAS  Google Scholar 

  53. Christel P. Biocompatibility of alumina. Clin Orthop. 1992;282:10–8.

    PubMed  Google Scholar 

  54. Cook S, Dalton J. Biocompatibility and biofunctionality of implanted materials. Alpha Omegan. 1992;85:41–7.

    CAS  PubMed  Google Scholar 

  55. Jordan DR, Mawn L, Brownstein S, et al. The bioceramic orbital implant: a new generation of porous implants. Ophthalmic Plast Reconstr Surg. 2000;16:347–55.

    Article  CAS  Google Scholar 

  56. Jordan DR, Gilberg S, Mawn LA. The bioceramic orbital implant: experience with 107 implants. Ophthalmic Plast Reconstr Surg. 2003;19:128–35.

    Article  Google Scholar 

  57. Jordan DR, Gilberg S, Bawazeer A. Coralline hydroxyapatite orbital implant (bio-eye): experience with 158 patients. Ophthalmic Plast Reconstr Surg. 2004;20:69–74.

    Article  Google Scholar 

  58. Wang JK, Lai PC, Liao SL. Late exposure of the bioceramic orbital implant. Am J Ophthalmol. 2009;147:162–70.

    Article  CAS  PubMed  Google Scholar 

  59. Su GW, Yen MT. Current trends in managing the anophthalmic socket after primary enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2004;20:274–80.

    Article  Google Scholar 

  60. Jordan DR, Anderson RL, Nerad JA, et al. A preliminary report on the universal implant. Arch Ophthalmol. 1987;105:1726–31.

    Article  CAS  PubMed  Google Scholar 

  61. Guillinta P, Vasani SN, Granet DB, et al. Prosthetic motility in pegged versus unpegged integrated porous orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:119–22.

    Article  Google Scholar 

  62. Custer PL, Kennedy RH, Woog JJ, et al. Orbital implants in enucleation surgery: a report by the American Academy of Ophthalmology. Ophthalmology. 2003;110:2054–61.

    Article  PubMed  Google Scholar 

  63. Custer PL, Trinkaus KM, Fornoff J. Comparative motility of hydroxyapatite and alloplastic enucleation implants. Ophthalmology. 1999;106:513–6.

    Article  CAS  PubMed  Google Scholar 

  64. Colen TP, Paridaens DA, Lemij HG, et al. Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. Ophthalmology. 2000;07:1889–94.

    Article  Google Scholar 

  65. Perry JD, Tam RC. Safety of unwrapped spherical orbital implants. Ophthalmic Plast Reconstr Surg. 2004;20:281–4.

    Article  Google Scholar 

  66. Trichopoulos N, Augsburger JJ. Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Ophthalmic Plast Reconstr Surg. 2005;1:331–6.

    Article  Google Scholar 

  67. Gundlach KKH, Gutoff RF, Hingst VHM, et al. Expansion of the socket and orbit for congenital clinical anophthalmia. Plast Reconstr Surg. 2005;116:1214–22.

    Article  CAS  PubMed  Google Scholar 

  68. Dunaway DJ, David DJ. Intraorbital tissue expansion in the management of congenital anophthalmos. Br J Plast Surg. 1996;49:529–33.

    Article  CAS  PubMed  Google Scholar 

  69. Sinclair D, Dangerfiled P. Nervous system. In: Sinclair D, Dangerfield P, editors. Human growth after birth. Oxford: Oxford University Press; 1998. p. 87.

    Google Scholar 

  70. Bentley RP, Sgouros S, Natarajan K, et al. Normal changes in orbital volume during childhood. J Neurosurg. 2002;96:742–6.

    Article  PubMed  Google Scholar 

  71. Yago K, Furuta M. Orbital growth after unilateral enucleation in infancy without an orbital implant. Jpn J Ophthalmol. 2001;45:648–52.

    Article  CAS  PubMed  Google Scholar 

  72. Furuta M. Measurement of orbital volume by computed tomography: especially on the growth of the orbit. Jpn J Ophthalmol. 2000;104:724–8.

    CAS  Google Scholar 

  73. Farkas LG, Posnick JC, Hrecko TM. Growth patterns in the orbital region: a morphometric study. Cleft Palate Craniofac J. 1992;29:315–8.

    Article  CAS  PubMed  Google Scholar 

  74. Apt L, Isenberg S. Changes in orbital dimensions following enucleation. Arch Ophthalmol. 1973;90:393–5.

    Article  CAS  PubMed  Google Scholar 

  75. Kennedy RE. The effect of early enucleation on the orbit in animals and humans. Trans Am Ophthalmol Soc. 1964;62:459–510.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Pfieffer RL. The effect of enucleation on the orbit. Trans Am Acad Ophthalmol. 1945;49:236–9.

    Google Scholar 

  77. Taylor W. Effect of enucleation of one eye in childhood upon subsequent development of the face. Trans Ophthalmol Soc UK. 1939;59:368–73.

    Google Scholar 

  78. Hintschich C, Zonneveld F, Baldeschi L, et al. Bony orbital development after early enucleation in humans. Br J Ophthalmol. 2001;85:205–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Howard GM, Kinder RS, MacMillan Jr AS. Orbital growth after uniltateral enucleation in childhood. Arch Ophthalmol. 1965;73:80–3.

    Article  CAS  PubMed  Google Scholar 

  80. Imhof SM, Mourits MP, Hofman P, et al. Quantification of orbital and mid-facial growth retardation after megavoltage external beam irradiation in children with retinoblastoma. Ophthalmology. 1996;103:263–8.

    Article  CAS  PubMed  Google Scholar 

  81. Cepela MA, Nunery WR, Martin RT. Stimulation of orbital growth by the use of expandable implants in the anophthalmic cat orbit. Ophthalmic Plast Reconstr Surg. 1992;8:157–67.

    Article  CAS  Google Scholar 

  82. Kaste SC, Chen G, Fontanesi J, et al. Orbital development in long-term survivors of retinoblastoma. J Clin Oncol. 1997;15:1183–9.

    CAS  PubMed  Google Scholar 

  83. Fountain TR, Goldberger S, Murphree AL. Orbital development after enucleation in early childhood. Ophthalmic Plast Reconstr Surg. 1999;15:32–6.

    Article  CAS  Google Scholar 

  84. Heher KL, Katowitz JA, Low JE. Unilateral dermis-fat graft implantation in the pediatric orbit. Ophthalmic Plast Reconstr Surg. 1998;14:81–8.

    Article  CAS  Google Scholar 

  85. Mitchell KT, Hollsten DA, White WL, et al. The autogenous dermis-fat orbital implant in children. J AAPOS. 2001;5:367–9.

    Article  CAS  PubMed  Google Scholar 

  86. Nunery WR, Hetzler KJ. Dermal-fat graft as a primary enucleation technique. Ophthalmology. 1985;92:1256–61.

    Article  CAS  PubMed  Google Scholar 

  87. Migliori ME, Putterman AM. The domed dermis-fat graft orbital implant. Ophthalmic Plast Reconstr Surg. 1991;7:23–30.

    Article  CAS  Google Scholar 

  88. DePotter P, Shields CL, Shields JA, et al. Use of the hydroxyapatite ocular implant in the pediatric population. Arch Ophthalmol. 1994;112:208–12.

    Article  CAS  Google Scholar 

  89. Iordanidou V, De PP. Porous polyethylene orbital implant in the pediatric population. Am J Ophthalmol. 2004;138:425–9.

    Article  PubMed  Google Scholar 

  90. Wang JK, Liao SL, Lin LL, et al. Porous orbital implants, wraps, and PEG placement in the pediatric population after enucleation. Am J Ophthalmol. 2007;144:109–16.

    Article  PubMed  Google Scholar 

  91. DePotter P, Shields CL, Shields JA, et al. Role of magnetic resonance imaging in the evaluation of the hydroxyapatite orbital implant. Ophthalmology. 1992;99:824–30.

    Article  CAS  Google Scholar 

  92. Arora V, Weeks K, Halperin EC, et al. Influence of coralline hydroxyapatite used as an ocular implant on the dose distribution of external beam photon radiation therapy. Ophthalmology. 1992;99:380–2.

    Article  CAS  PubMed  Google Scholar 

  93. Kaltreider SA. The ideal ocular prosthesis: analysis of prosthetic volume. Ophthalmic Plast Reconstr Surg. 2000;16:388–92.

    Article  CAS  Google Scholar 

  94. Kaltreider SA, Lucarelli MJ. A simple algorithm for selection of implant size for enucleation and evisceration. Ophthalmic Plast Reconstr Surg. 2002;18:336–41.

    Article  Google Scholar 

  95. Custer PL, Trinkaus KM. Volumetric determination of enucleation implant size. Am J Ophthalmol. 1999;128:489–49492.

    Article  CAS  PubMed  Google Scholar 

  96. Thaller VT. Enucleation volume measurement. Ophthalmic Plast Reconstr Surg. 1997;13:18–20.

    Article  CAS  Google Scholar 

  97. Kaltreider SA, Jacobs JL, Hughes MO. Predicting the ideal implant size before enucleation. Ophthalmic Plast Reconstr Surg. 1999;15:37–43.

    Article  CAS  Google Scholar 

  98. Perry JD. Hydroxyapatite implants (letter). Ophthalmology. 2003;110:1281–3.

    Article  PubMed  Google Scholar 

  99. Long JA, Tann III TM, Bearden III WH, et al. Enucleation: is wrapping the implant necessary for optimal motility? Ophthalmic Plast Reconstr Surg. 2003;19:194–7.

    Article  Google Scholar 

  100. Suter AJ, Molteno AC, Bevin TH, et al. Long term follow up of bone derived hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:1287–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Li T, Shen J, Duffy MT. Exposure rates of wrapped and unwrapped orbital implants following enucleation. Ophthalmic Plast Reconstr Surg. 2001;17:431–5.

    Article  CAS  Google Scholar 

  102. Jordan DR, Klapper SR. Wrapping hydroxyapatite implants. Ophthalmic Surg Lasers. 1999;30:403–7.

    CAS  PubMed  Google Scholar 

  103. Jordan DR. Localization of extraocular muscles during secondary orbital implantation surgery: the tunnel technique: experience in 100 patients. Ophthalmology. 2004;111:1048–54.

    Article  PubMed  Google Scholar 

  104. Nunery WR. Risk of prion transmission with the use of xenografts and allografts in surgery. Ophthalmic Plast Reconstr Surg. 2003;17:389–94.

    Article  Google Scholar 

  105. Seiff SR, Chang Jr JS, Hurt MH, et al. Polymerase chain reaction identification of human immunodeficiency virus-1 in preserved human sclera. Am J Ophthalmol. 1994;118:528–9.

    CAS  PubMed  Google Scholar 

  106. Lang CJ, Heckmann JG, Neundorfer B. Creutzfeldt-Jakob disease via dural and corneal transplants. J Neurol Sci. 1998;160:128–39.

    Article  CAS  PubMed  Google Scholar 

  107. Brooke FJ, Boyd A, Klug GM, et al. Lyodura use and the risk of iatrogenic Creutzfeldt-Jakob disease in Australia. Med J Aust. 2004;180:177–81.

    PubMed  Google Scholar 

  108. Hogan RN, Brown P, Heck E, et al. Risk of prion disease transmission from ocular donor tissue transplantation. Cornea. 1999;18:2–11.

    Article  CAS  PubMed  Google Scholar 

  109. Heckmann JG, Lang CJ, Petruch F, et al. Transmission of Creutzfeldt-Jakob disease via a corneal transplant. J Neurol Neurosurg Psychiatry. 1997;63:388–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Simonds RJ, Holmberg SD, Hurwitz RL, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med. 1992;326:726–32.

    Article  CAS  PubMed  Google Scholar 

  111. Arat YO, Shetlar DJ, Boniuk M. Bovine pericardium versus homologous sclera as a wrapping for hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2003;19:189–93.

    Article  Google Scholar 

  112. Gayre GS, DeBacker CM, Lipham W, et al. Bovine pericardium as a wrapping for orbital implants. Ophthalmic Plast Reconstr Surg. 2001;17:381–7.

    Article  CAS  Google Scholar 

  113. Pelletier CR, Jordan DR, Gilberg SM. Use of temporalis fascia for exposed hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 1998;14:198–203.

    Article  CAS  Google Scholar 

  114. Naugle Jr TC, Fry CL, Sabatier RE, et al. High leg incision fascia lata harvesting. Ophthalmology. 1997;104:1480–8.

    Article  PubMed  Google Scholar 

  115. Kao SCS, Chen S. The use of rectus abdominis sheath for wrapping of the hydroxyapatite orbital implants. Ophthalmic Surg Lasers. 1999;30:69–71.

    CAS  PubMed  Google Scholar 

  116. Naugle Jr TC, Lee AM, Haik BG, et al. Wrapping hydroxyapatite orbital implants with posterior auricular muscle complex grafts. Am J Ophthalmol. 1999;128:495–501.

    Article  PubMed  Google Scholar 

  117. Karesh JW. Polytetrafluoroethylene as a graft material in ophthalmic plastic and reconstructive surgery: an experimental and clinical study. Ophthalmic Plast Reconstr Surg. 1987;3:179–85.

    Article  CAS  Google Scholar 

  118. Choo PH, Carter SR, Crawford JB, et al. Exposure of expanded polytetrafluoroethylene-wrapped hydroxyapatite orbital implant: a report of two patients. Ophthalmic Plast Reconstr Surg. 1999;15:77–8.

    Article  CAS  Google Scholar 

  119. Kao L. Polytetrafluoroethylene as a wrapping material for a hydroxyapatite orbital implant. Ophthalmic Plast Reconstr Surg. 2000;16:286–8.

    Article  CAS  Google Scholar 

  120. Heimann H, Bechrakis NE, Zepeda LC, et al. Exposure of orbital implants wrapped with polyester-urethane after enucleation for advanced retinoblastoma. Ophthalmic Plast Reconstr Surg. 2005;21:123–8.

    Article  Google Scholar 

  121. Klapper SR, Jordan DR, Punja K, et al. Hydroxyapatite implant wrapping materials: analysis of fibrovascular ingrowth in an animal model. Ophthalmic Plast Reconstr Surg. 2000;16:278–85.

    Article  CAS  Google Scholar 

  122. Jordan DR, Allen LH, Ells A, et al. The use of vicryl mesh (polyglactin 910) for implantation of hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 1995;11:95–9.

    Article  CAS  Google Scholar 

  123. Jordan DR, Ells A, Brownstein S, et al. Vicryl-mesh wrap for the implantation of hydroxyapatite orbital implants: an animal model. Can J Ophthalmol. 1995;30:241–6.

    CAS  PubMed  Google Scholar 

  124. Gayre GS, Lipham W, Dutton JJ. A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model. Ophthalmic Plast Reconstr Surg. 2002;18:275–80.

    Article  Google Scholar 

  125. Custer PL. Enucleation: past, present, and future. Ophthalmic Plast Reconstr Surg. 2000;16:316–21.

    Article  CAS  Google Scholar 

  126. Custer PL. Reply to Dr. D.R. Jordan’s letter on polyglactin mesh wrapping of hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 2001;17:222–3.

    Article  Google Scholar 

  127. Inkster CF, Ng SG, Leatherbarrow B. Primary banked sclera patch graft in the prevention of exposure of hydroxyapatite orbital implants. Ophthalmology. 2002;109:389–92.

    Google Scholar 

  128. Jordan DR, Chan S, Mawn L, et al. Complications associated with pegging hydroxyapatite orbital implants. Ophthalmology. 1999;106:505–12.

    Article  CAS  PubMed  Google Scholar 

  129. Edelstein C, Shields CL, DePotter P, et al. Complications of motility peg placement for the hydroxyapatite orbital implant. Ophthalmology. 1997;104:1616–21.

    Article  CAS  PubMed  Google Scholar 

  130. Lin CJ, Liao SL, Jou JR, et al. Complications of motility peg placement for porous hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:394–6.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Jordan DR. Spontaneous loosening of hydroxyapatite peg sleeves. Ophthalmology. 2001;108:2041–4.

    Article  CAS  PubMed  Google Scholar 

  132. Cheng MS, Liao SL, Lin LL. Late porous polyethylene implant exposure after motility coupling post placement. Am J Ophthalmol. 2004;138:420–4.

    Article  PubMed  Google Scholar 

  133. Lee SY, Jang JW, Lew H, et al. Complications in motility PEG placement for hydroxyapatite orbital implant in anophthalmic socket. Jpn J Ophthalmol. 2002;46:103–7.

    Article  PubMed  Google Scholar 

  134. Fahim DK, Frueh BR, Musch DC, et al. Complications of pegged and non-pegged hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2007;23:206–10.

    Article  Google Scholar 

  135. Yazici B, Akova B, Sanli O. Complications of primary placement of motility post in porous polyethylene implants during enucleation. Am J Ophthalmol. 2007;143:828–34.

    Article  PubMed  Google Scholar 

  136. Jordan DR, Klapper SR. A new titanium peg system for hydroxyapatite orbital implants. Ophthalmic Plast Reconstr Surg. 2000;16:380–7.

    Article  CAS  Google Scholar 

  137. Ainbinder DJ, Haik BG, Tellado M. Hydroxyapatite orbital implant abscess: histopathologic correlation of an infected implant following evisceration. Ophthalmic Plast Reconstr Surg. 1994;10:267–70.

    Article  CAS  Google Scholar 

  138. Klapper SR, Jordan DR, Ells A, et al. Hydroxyapatite orbital implant vascularization assessed by magnetic resonance imaging. Ophthalmic Plast Reconstr Surg. 2003;19:46–52.

    Article  Google Scholar 

  139. Choi JC, Iwamoto MA, Bstandig S, et al. Medpor motility coupling post: a rabbit model. Ophthalmic Plast Reconstr Surg. 1999;15:190–201.

    Article  CAS  Google Scholar 

  140. Rubin PAD, Fay AM, Remulla HD. Primary placement of motility coupling post in porous polyethylene orbital implants. Arch Ophthalmol. 1999;118:826–32.

    Article  Google Scholar 

  141. Hsu WC, Green JP, Spilker MH, et al. Primary placement of a titanium motility post in a porous polyethylene orbital implant. Ophthalmic Plast Reconstr Surg. 2003;16:370–9.

    Article  Google Scholar 

  142. Liao SL, Chen MS, Lin LL. Primary placement of a titanium sleeve in hydroxyapatite orbital implants. Eye. 2005;19:400–5.

    Article  CAS  PubMed  Google Scholar 

  143. Liao SL, Shih MJ, Lin LL. Primary placement of a hydroxyapatite-coated sleeve in bioceramic orbital implants. Am J Ophthalmol. 2005;139:235–41.

    Article  CAS  PubMed  Google Scholar 

  144. Jordan DR, Brownstein S, Faraji H. Clinicopathologic analysis of 15 explanted hydroxyapatite implants. Ophthalmic Plast Reconstr Surg. 2004;20:285–90.

    Article  Google Scholar 

  145. Jordan DR, Klapper SR, Mawn L, et al. Abscess formation within a synthetic hydroxyapatite orbital implant. Can J Ophthalmol. 1998;33:329–33.

    CAS  PubMed  Google Scholar 

  146. Klapper SR, Jordan DR, Brownstein S, et al. Incomplete fibrovascularization of a hydroxyapatite orbital implant 3 months after implantation. Arch Ophthalmol. 1999;106:1640–1.

    Article  CAS  Google Scholar 

  147. Miller DM, Murray T, Suarez F, et al. Motility assessment and clinical outcomes of a magnetically integrated microporous implant. Ophthalmic Surg Lasers Imaging. 2007;38:339–41.

    PubMed  Google Scholar 

  148. Nakara T, Ben Simon GY, Douglas RS. Comparing outcomes of enucleation and evisceration. Ophthalmology. 2006;113:2270–5.

    Article  Google Scholar 

  149. Timothy NH, Freilich DE, Linberg JV. Evisceration versus enucleation from the ocularists’s perspective. Ophthalmic Plast Reconstr Surg. 2003;19:417–20.

    Article  Google Scholar 

  150. Georgescu D, Reza Vagefi M, Lin Yang CC, McCann J, Anderson RL. Evisceration with equatorial sclerotomy for phthisis bulbi ann microphthalmos. Ophthalmic Plast Reconstr Surg. 2010;26:165–7.

    Article  Google Scholar 

  151. Jordan DJ, Parisi J. The scleral filet technique. Can J Ophthalmol. 1996;31(7):357–61.

    Google Scholar 

  152. Soll DB. Evisceration with eversion of the scleral shell and muscle cone positioning of the implant. Am J Ophthalmol. 1987;104:265–9.

    CAS  PubMed  Google Scholar 

  153. Kostick DA, Linberg JV. Evisceration with hydroxyapatite implant. Surgical technique and review of 31 case reports. Ophthalmology. 1995;102:1542–9.

    Article  CAS  PubMed  Google Scholar 

  154. Jordan DR, Anderson RL. The universal implant for evisceration surgery. Ophthalmic Plast Reconstr Surg. 1997;13:1–7.

    Article  CAS  Google Scholar 

  155. Long JA, Tann III TM, Girgin CA. Evisceration: a new technique of trans scleral implant placement. Ophthalmic Plast Reconstr Surg. 2000;5(3):322–5.

    Article  Google Scholar 

  156. Massry GG, Holds JB. Evisceration with scleral modification. Ophthalmol Plast Reconstr Surg. 2001;17:42–7.

    Article  CAS  Google Scholar 

  157. Ozgur OR, Akcay L, Dogan OK. Evisceration via superior temporal sclerotomy. Am J Ophthalmol. 2005;139:78–86.

    Article  PubMed  Google Scholar 

  158. Hart RH, Barnes E, Dickinson AJ. Secondary orbital implants after evisceration: a new conjunctiva-sparing technique. Ophthalmol Plast Reconstr Surg. 2005;21:129–32.

    Article  Google Scholar 

  159. Sales-Sanz M, Sanz-Lopez A. Four-petal evisceration: a new technique. Ophthalmol Plast Reconstr Surg. 2007;23:389–92.

    Article  Google Scholar 

  160. Masidottir S, Sahlin S. Patient satisfaction and results after evisceration with a split-sclera technique. Orbit. 2007;26:389–92.

    Google Scholar 

  161. Maumanee AE. Retrobulbar alcohol injection: relief of ocular pain in eyes with and without vision. Am J Ophthamol. 1949;32:1502–8.

    Google Scholar 

  162. Al-Faran MF, Al-Omar O. Retrobulbar alcohol injection in blind painful eyes. Ann Ophthalmol. 1990;22:460–2.

    CAS  PubMed  Google Scholar 

  163. Olurin O, Osuntokun O. Complications of retrobulbar alcohol injections. Ann Ophthalmol. 1978;10:474–6.

    CAS  PubMed  Google Scholar 

  164. Chen TC, Ahn Yuen SJ, Sangaalang MA, Fernando RE, Luenberger EU. Retrobulbar chlorpromazine injections for management of blind and seeing eyes. J Glaucoma. 2002;11:209–13.

    Article  PubMed  Google Scholar 

  165. Estafanous MFG, Kaiser PK, Baerveldt G. Retrobulbar chlorpromazine in blind and seeing eyes. Retina. 2000;20:555–8.

    Article  CAS  PubMed  Google Scholar 

  166. McCulley TJ, Kersten RC. Periocular inflammation after retrobulbar chlorpromazine (Thorazine) injection. Ophthalmic Plast Reconstr Surg. 2006;4:283–5.

    Article  Google Scholar 

  167. Cotliar JM, Shields CL, Meyer DR. Chronic orbital inflammation and fibrosis after retrobulbar alcohol and chlorpromazine injections in a patient with choroidal melanoma. Ophthalmic Plast Reconstr Surg. 2008;24:410–1.

    Article  Google Scholar 

  168. Burroughs JR, Soparkar CN, Patrinely JR, Kersten RC, Kulwin DR, Lowe CL. Monitored anesthesia care for enucleations and eviscerations. Ophthalmology. 2003;110(2):311–3.

    Article  PubMed  Google Scholar 

  169. Archer KF, Hurwitz JJ. Dermis-fat grafts and evisceration. Ophthalmology. 1989;96:170–4.

    Article  CAS  PubMed  Google Scholar 

  170. Borodic GE, Townsend DJ, Beyer-Machule CK. Dermis fat graft in eviscerated sockets. Ophthalmic Plast Reconstr Surg. 1989;5:144–9.

    Article  CAS  Google Scholar 

  171. Lisman RD, Smith BC. Dermis-fat grafting. In: Smith BC, editor. Ophthalmic plastic and reconstructive surgery. St Louis: CV Mosby; 1987. p. 1308–20.

    Google Scholar 

  172. Saunders CK, Garber PF, Della Rocca RC. Socket reconstruction. In: Levine MR, editor. Manual of oculoplastic surgery. Philadelphia: Butterworth Heinemann; 2003. p. 314–6.

    Google Scholar 

  173. Spivey BE et al. The Iowa enucleation implant: a 10 year evolution of technique and results. Am J Opthalmol. 1969;67:171–7.

    CAS  Google Scholar 

  174. Anderson RL, Thiese SM, Nerad JA, et al. The universal orbital implant: indications and methods. Adv Ophthalmic Plast Reconstr Surg. 1990;8:88–99.

    CAS  PubMed  Google Scholar 

  175. Levine MR, Pou CR, Lesh RH. The 1998 Wendell Hughes lecture. Evisceration: is sympathetic ophthalmia a concern in the new millenium? Ophthalmic Plast Reconstr Surg. 1999;15:4–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Jordan M.D., F.A.C.S., F.R.C.S.(C.) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jordan, D.R., Klapper, S.R. (2012). Enucleation, Evisceration, Secondary Orbital Implantation. In: Black, E., Nesi, F., Calvano, C., Gladstone, G., Levine, M. (eds) Smith and Nesi’s Ophthalmic Plastic and Reconstructive Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0971-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0971-7_68

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0970-0

  • Online ISBN: 978-1-4614-0971-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics