Skip to main content

Nausea and Vomiting

  • Chapter
  • First Online:
Pathobiology of Cancer Regimen-Related Toxicities

Abstract

Despite the fact that research in the mechanism of vomiting goes back more than 300 years, there are still major gaps in our knowledge. The first report of the clinical use of an antineoplastic drug was published in 1942, but it was not until cisplatin, the most emetogenic of all drugs, was approved in 1978, the necessity of focusing on antiemetic research became evident.

This chapter will focus on the biological basis of nausea and vomiting from the time of the very simple animal experiments, suggesting the existence of a vomiting center, to current research methodology enabling precise subdivision of receptors involved in the emetic reflex arch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wepfer JJ. Historia cicutae aquaticae. Basel. 1679;152.

    Google Scholar 

  2. Mellinger C. Beitrage zur Kenntniff des Erbrechens. Pfluegers Arch. 1881;24:232–40.

    Google Scholar 

  3. Cannon WB. The movement of the stomach studied by means of the röntgen rays. Am J Physiol. 1898;1:359–82.

    Google Scholar 

  4. Giannuzzi G. Untersuchungen über die Organe, welche an dem Brechaet theilnehmen, und über die Physiologische Wirkung de Tartarus stibiatic. Zent Med Wizz. 1865;3:129–31.

    Google Scholar 

  5. Thumas LJ. Über das Brechcentrum und über die Wirkung einiger pharmakologischer Mittel auf dasselbe. Arch für Patol Anat. 1891;123:44–69.

    Google Scholar 

  6. Hatcher RA, Weiss S. Studies on vomiting. J Pharmacol Exp Ther. 1923;22:139–93.

    CAS  Google Scholar 

  7. Borison HL, Wang SC. Functional location of central coordinating mechanism for emesis in cat. J Physiol. 1949;12:305–13.

    CAS  Google Scholar 

  8. Wang SC, Borison HL. Copper sulphate emesis: a study of afferent pathways from the gastrointestinal tract. J Physiol. 1951;14:520–6.

    Google Scholar 

  9. Borison HL, Wang SC. Locus of the central emetic action of cardiac glycosides. J Physiol. 1951;76:335–8.

    CAS  Google Scholar 

  10. Wang SC, Borison HL. A new concept of organization of the central emetic mechanism: recent studies on sites of action of apomorphine, copper sulphate and cardiac glycosides. Gastroenterology. 1952;22:1–12.

    PubMed  CAS  Google Scholar 

  11. Borison HL, Wang SC. Physiology and pharmacology of vomiting. Pharmacol Rev. 1953;5:193–230.

    PubMed  CAS  Google Scholar 

  12. Lindstrom PA, Brizze KR. Relief of intractable vomiting from surgical lesions in the area postrema. J Neurosurg. 1962;19:228–36.

    PubMed  CAS  Google Scholar 

  13. Miller AD, Wilson VJ. “Vomiting center” reanalyzed: an electrical stimulation study. Brain Res. 1983;270:154–8.

    PubMed  CAS  Google Scholar 

  14. Miller AD, Nonaka S, Jakûs J. Brain areas essential or non-essential for emesis. Brain Res. 1994;647:255–64.

    PubMed  CAS  Google Scholar 

  15. Carpenter DO. Neural mechanisms of emesis. Can J Physiol Pharmacol. 1990;68:230–6.

    PubMed  CAS  Google Scholar 

  16. Carl PL, Cubeddu LX, Lindley C, Myers RD, Rezvani AH. Do humoral factors mediate cancer chemotherapy-induced emesis? Drug Metab Rev. 1989;21:319–33.

    PubMed  CAS  Google Scholar 

  17. Peroutka SJ. Chemotherapeutic agents do not interact with neurotransmitter receptors. Cancer Chemother Pharmacol. 1987;19:131–2.

    PubMed  CAS  Google Scholar 

  18. Herrstedt J, Hyttel J, Pedersen J. Interaction of the antiemetic metopimazine and anticancer agents with brain dopamine D2, 5-hydroxytryptamine3, histamine H1, muscarine cholinergic and α1-adrenergic receptors. Cancer Chemother Pharmacol. 1993;33:53–6.

    PubMed  CAS  Google Scholar 

  19. Herrstedt J. Antiemetics: an update and the MASCC guidelines applied in clinical practice. Nat Clin Pract Oncol. 2008;5:32–43.

    PubMed  CAS  Google Scholar 

  20. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature. 1957;180:1200.

    PubMed  CAS  Google Scholar 

  21. Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci. 2007;30:188–93.

    PubMed  CAS  Google Scholar 

  22. Anden NE, Carlsson A, Dahlstroem A, Fuxe K, Hillarp NA, Larsson K. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 1964;3:523–30.

    PubMed  CAS  Google Scholar 

  23. Dahlstroem A, Fuxe K. Evidence for the existence of monoamine- containing neurons in the central nervous system. I. Demonstration of mono- amines in the cell bodies of brain stem neurons. Acta Physiol Scand. 1964;232(Suppl):231–55.

    Google Scholar 

  24. Bunney B. Antipsychotic drug effects on the electrical activity of dopaminergic neurons. Trends Neurosci. 1984;7:212–5.

    CAS  Google Scholar 

  25. Kebabian JW, Petzold GL, Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci. 1972;69:2145–9.

    PubMed  CAS  Google Scholar 

  26. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature. 1979;277:93–6.

    PubMed  CAS  Google Scholar 

  27. Katzman R, Markman MH, Ahn HS, Mishra RK, Gardner E. Effects of drugs and lesions on dopamine-stimulated adenylate cyclase: evidence for different classes of dopamine receptors. Trans Am Neurol Assoc. 1977;102:76–9.

    PubMed  CAS  Google Scholar 

  28. Beaulieu JM, Gainetdinov RR. The physiology, signaling and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    PubMed  CAS  Google Scholar 

  29. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.

    PubMed  CAS  Google Scholar 

  30. Carlsson A. A paradigm shift in brain research. Science. 2001;294:1021–4.

    PubMed  CAS  Google Scholar 

  31. Bunzow JR, Van Tol HH, Grandy DK, et al. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature. 1988;336:783–7.

    PubMed  CAS  Google Scholar 

  32. Giros B, Sokoloff P, Martres MP, Riou JF, Emorine LJ, Schwartz JC. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature. 1989;342:923–6.

    PubMed  CAS  Google Scholar 

  33. Moertel CG, Reitemeier RJ, Gage RP. A controlled clinical evaluation of antiemetic drugs. JAMA. 1963;186:116–8.

    PubMed  CAS  Google Scholar 

  34. Shen WW, Baig MS, Sata LS, Hofstatter L. Dopamine receptor supersensitivity and the chemoreceptor trigger zone. Biol Psychiatry. 1983;18:917–21.

    PubMed  CAS  Google Scholar 

  35. Jolliet P, Nion S, Allain-Veyrac G, et al. Evidence of the lowest brain penetration of an antiemetic drug, metopimazine, compared to domperidone, metoclopramide and chlorpromazine, using an in vitro model of the blood–brain barrier. Pharmacol Res. 2007;56:11–7.

    PubMed  CAS  Google Scholar 

  36. Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347(6289):146–51.

    PubMed  CAS  Google Scholar 

  37. Yoshida N, Yoshikawa T, Hosoki K. A dopamine D3 receptor agonist, 7-OH-DPAT, causes vomiting in the dog. Life Sci. 1995;57:PL347–50.

    PubMed  CAS  Google Scholar 

  38. Yoshikawa T, Yoshida N, Hosoki K. Involvement of dopamine D3 receptors in the area postrema in R(+)-7-OH-DPAT induced emesis in the ferret. Eur J Pharmacol. 1996;301:143–9.

    PubMed  CAS  Google Scholar 

  39. Stemp G, Ashmeade T, Branch CL, et al. Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D3 receptor antagonist with high oral bioavailability and CNS penetration in the rat. J Med Chem. 2000;43:1878–85.

    PubMed  CAS  Google Scholar 

  40. Rapport MM, Green AA, Page IH. Partial purification of the vasoconstrictor in beef serum. J Biol Chem. 1948;176:735–41.

    Google Scholar 

  41. Rapport MM. Crystalline Serotonin. Science. 1948;108:329–30.

    Google Scholar 

  42. Freyburger WA, Graham BE, Rapport MM, et al. The pharmacology of 5-hydroxytryptamine (serotonin). J Pharmacol Exp Ther. 1952;105:80–6.

    PubMed  CAS  Google Scholar 

  43. Gaddum JH, Hameed KA. Drugs which antagonize 5-hydroxytryptamine. Br J Pharmacol. 1954;9:240–8.

    CAS  Google Scholar 

  44. Gaddum JH, Picarelli ZP. Two kinds of tryptamine receptors. Br J Pharmacol. 1957;12:323–8.

    CAS  Google Scholar 

  45. Peroutka SJ, Snyder SH. Multiple serotonin receptors: differential binding of 3H-5-hydrxytryptamine, 3H-lysergic acid diethylamide and 3H-spiropidol. Mol Pharmacol. 1979;16:687–9.

    PubMed  CAS  Google Scholar 

  46. Bradley PB, Engel G, Feniuk W, et al. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 1986;25:563–76.

    PubMed  CAS  Google Scholar 

  47. Hoyer D, Clarke DE, Fozard JR, et al. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev. 1994;46:157–203.

    PubMed  CAS  Google Scholar 

  48. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71:533–54.

    PubMed  CAS  Google Scholar 

  49. Kilpatrick GJ, Jones BJ, Tyers MB. Identification and distribution of 5-HT3 receptors in the brain using radioligand binding. Nature. 1987;330:746–8.

    PubMed  CAS  Google Scholar 

  50. Pratt GD, Bowery NG, Kilpatrick GJ, et al. Consensus meeting agrees about distribution of 5-HT3 receptors in mammalian hindbrain. TIPS. 1990;11:135–7.

    PubMed  CAS  Google Scholar 

  51. Belelli D, Balcarek JM, Hope AG, et al. Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol Pharmacol. 1995;48:1054–62.

    PubMed  CAS  Google Scholar 

  52. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S. Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol. 1995;48:407–16.

    PubMed  CAS  Google Scholar 

  53. Davies PA, Pistis M, Hanna MC, et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature. 1999;397:359–63.

    PubMed  CAS  Google Scholar 

  54. Niesler B, Frank B, Kapeller J, Rappold GA. Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene. 2003;310:101–11.

    PubMed  CAS  Google Scholar 

  55. Niesler B, Kapeller J, Hammer C, Rappold G. Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics. 2008;9:501–4.

    PubMed  CAS  Google Scholar 

  56. Jensen AA, Davies PA, Braüner-Osborne H, Krzywkowski K. 3B but which 3B? And that’s just one of the questions: the heterogeneity of human 5-HT3 receptors. TIPS. 2008;29:437–44.

    PubMed  CAS  Google Scholar 

  57. Niesler B. 5-HT3 receptors: potential of individual isoforms for personalized therapy. Curr Opin Pharmacol. 2011;11:81–6.

    PubMed  CAS  Google Scholar 

  58. Gralla RJ, Itri LM, Pisko SE, et al. Antiemetic efficacy of high-dose metoclopramide: ­randomized trials with placebo and prochlorperazine in patients with chemotherapy-induced vomiting. N Engl J Med. 1981;305:905–9.

    PubMed  CAS  Google Scholar 

  59. Fozard JR, Mobarok ALIA. Blockade of neuronal tryptamine receptors by metoclopramide. Eur J Pharmacol. 1978;49:109–12.

    PubMed  CAS  Google Scholar 

  60. Fozard JR. MDL 72222, a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1984;326:36–44.

    PubMed  CAS  Google Scholar 

  61. Costall B, Domeney AM, Naylor RJ, Tattersall FD. 5-hydroxytryptamine M-receptor antagonism to prevent cisplatin-induced emesis. Neuropharmacology. 1986;25:959–61.

    PubMed  CAS  Google Scholar 

  62. Miner WD, Sanger GJ. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism. Br J Pharmacol. 1986;88:497–9.

    PubMed  CAS  Google Scholar 

  63. Leibundgut U, Lancranjan I. First results with ICS 205–930 (5-HT3 receptor antagonist) in prevention of chemotherapy-induced emesis. Lancet. 1987;329:1198.

    Google Scholar 

  64. Cunningham D, Hawthorne J, Pople A, et al. Prevention of emesis in patients receiving cytotoxic drugs by GR38032F, a selective 5HT 3 receptor antagonist. Lancet. 1987;329:1461–3.

    Google Scholar 

  65. Dale HH, Dudley HW. The presence of histamine and acethylcholine in the spleen of the ox and the horse. Physiology. 1929;68:97–123.

    CAS  Google Scholar 

  66. Von Euler VS, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol (Lond). 1931;1931:577–83.

    Google Scholar 

  67. Lembeck F. Zur Frage der zentralen Ubertragung afferenter Impulse III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Ruckenmarks. Arch Exp Pathol Pharmakol. 1953;219:197–213.

    CAS  Google Scholar 

  68. Chang M, Leeman SE. Isolation of sialogogic peptide from bovine hypothalamic tissue and its characteristic as substance P. J Biol Chem. 1970;245:4784–90.

    PubMed  CAS  Google Scholar 

  69. Kangawa H, Minamino N, Fukuda A, Matsuo H. Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochem Biophys Res Commun. 1983;114:533–40.

    PubMed  CAS  Google Scholar 

  70. Kimura S, Okada M, Sugita Y, Kanzawa I, Munekata E. Novel neuropeptides, neurokinin A and B isolated from porcine spinal cord. Proc Jpn Acad. 1983;59B:101–4.

    Google Scholar 

  71. Erspamer V. The tachykinin peptides family. Trends Neurosci. 1981;4:267–9.

    CAS  Google Scholar 

  72. Buck SH, Burcher E, Shults CW, Lovenberg W, O’Donohue TL. Novel pharmacology of substance K–binding sites: a third type of tachykinin receptor. Science. 1984;226:987–9.

    PubMed  CAS  Google Scholar 

  73. Laufer R, Gilon C, Chorev M, Selinger Z. Characterization of a neurokinin B receptor site in rat brain using a highly selective radioligand. J Biol Chem. 1986;261:10257–63.

    PubMed  CAS  Google Scholar 

  74. Lee C-M, Campbell NJ, Williams BJ, Iversen LL. Multiple tachykinin binding sites in peripheral tissues and in the brain. Eur J Pharmacol. 1986;130:209–17.

    PubMed  CAS  Google Scholar 

  75. Masu Y, Nakayama K, Tamaki H, Harada Y, Kuno M, Nakanishi S. cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature. 1987;329:836–8.

    PubMed  CAS  Google Scholar 

  76. Yokota Y, Sasai Y, Tanaka K, et al. Molecular characterization of a functional cDNA for rat substance P receptor. J Biol Chem. 1989;264:17649–52.

    PubMed  CAS  Google Scholar 

  77. Shigemoto R, Yokota Y, Tsuschida K, Nakanishi S. Cloning and expression of a rat neuromedin K receptor cDNA. J Biol Chem. 1990;265:623–8.

    PubMed  CAS  Google Scholar 

  78. Maggi CA, Patacchini R, Roveto P, Giachetti A. Tachykinin receptors and receptor antagonists. J Auton Pharmac. 1993;13:23–93.

    Google Scholar 

  79. Leander S, Håkanson R, Rosell S, Folkers K, Sundler F, Tornquist K. A specific substance P antagonist blocks smooth muscle contractions induced by non-cholinergic, non-adrenergic nerve stimulation. Nature. 1981;294:467–9.

    PubMed  CAS  Google Scholar 

  80. Snider RM, et al. A potent nonpeptide antagonist of the substance P (NK1) receptor. Science. 1991;251:435–7.

    PubMed  CAS  Google Scholar 

  81. Tattersall FD, et al. The tachykinin NK1 receptor antagonist CP-99,994 attenuates cisplatin induced emesis in the ferret. Eur J Pharmacol. 1993;250:R5–6.

    PubMed  CAS  Google Scholar 

  82. Kris MG, et al. Use of a NK1 receptor antagonist to prevent delayed emesis after cisplatin. J Natl Cancer Inst. 1997;89:817–8.

    PubMed  CAS  Google Scholar 

  83. Harris HL. Cytotoxic therapy-induced vomiting is mediated via enkephalin pathways. Lancet. 1982;1:714–6.

    PubMed  CAS  Google Scholar 

  84. Fisher RD, Rentschler RE, Nelson JC, Godfrey TE, Wilbur DW. Elevation of plasma ­antidiuretic hormone (ADH) associated with chemotherapy-induced emesis in man. Cancer Treat Rep. 1982;66:25–9.

    PubMed  CAS  Google Scholar 

  85. Perry MR, Rhee J, Smith WL. Plasma levels of peptide YY correlate with cisplatin-induced emesis in dogs. J Pharm Pharmacol. 1994;46:553–7.

    PubMed  CAS  Google Scholar 

  86. Rudd JA, Ngan MP, Wai MK, et al. Anti-emetic activity of ghrelin in ferrets exposed to the cytotoxic anticancer agent cisplatin. Neurosci Lett. 2006;392:79–83.

    PubMed  CAS  Google Scholar 

  87. Walsh D, Nelson KA, Mahmoud FA. Established and potential therapeutic applications of cannabinoids in oncology. Support Care Cancer. 2003;11:137–43.

    PubMed  Google Scholar 

  88. Rocha M, Stéfano SC, De Cássia HR, Oliveira R, Da Silveira DX. Therapeutic use of cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: systematic review and meta-analysis. Eur J Cancer Care. 2008;17:431–43.

    Google Scholar 

  89. Ahlquist RP. A study of adrenotropic receptors. Am J Physiol. 1948;153:586.

    PubMed  CAS  Google Scholar 

  90. Jenkins LC, Lahay D. Central mechanisms of vomiting related to catecholamines response: anaesthetic implication. Can Anaesth Soc J. 1971;18:434–41.

    PubMed  CAS  Google Scholar 

  91. Borison HL. Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Prog Neurobiol. 1989;32:351–90.

    PubMed  CAS  Google Scholar 

  92. Lang IM, Sarna SK. The role of adrenergic receptors in the initiation of vomiting and its gastrointestinal motor correlates. J Pharmacol Exp Ther. 1991;263:395–403.

    Google Scholar 

  93. Beleslin DB, Strbac M. Noradrenaline-induced emesis: alpha-2 adrenoreceptor mediation in the area postrema. Neuropharmacology. 1987;26:1157–65.

    PubMed  CAS  Google Scholar 

  94. Fredrikson M, Hursi T, Steineck G, Fürst CJ, Börjesson S, Peterson C. Delayed chemotherapy-induced nausea is augmented by high levels of endogenous noradrenaline. Br J Cancer. 1994;70:642–5.

    PubMed  CAS  Google Scholar 

  95. Showell GA, Barnes MJ, Daiss JO, et al. (R)-sila-venlafaxine: a selective noradrenaline reuptake inhibitor for the treatment of emesis. Bioorg Med Chem Lett. 2006;16:2555–8.

    PubMed  CAS  Google Scholar 

  96. Warneck JB, Cheng FH, Barnes MJ, et al. Action of (R)-sila-venlafaxine and reboxetine to antagonize cisplatin-induced acute and delayed emesis in the ferret. Toxicol Appl Pharmacol. 2008;232:369–75.

    PubMed  CAS  Google Scholar 

  97. Du Bois A, Kriesinger-Schroeder H, Meerpohl H-G. The role of serotonin as a mediator of emesis induced by different stimuli. Support Care Cancer. 1995;3:285–90.

    PubMed  Google Scholar 

  98. Cubeddu LX, Hoffmann IS, Fuenmayor NT, Malave JJ. Changes in serotonin metabolism in cancer patients: its relationship to nausea and vomiting induced by chemotherapeutic drugs. Br J Cancer. 1992;66:198–203.

    PubMed  CAS  Google Scholar 

  99. Cubeddu LX, Hoffmann IS. Participation of serotonin on early and delayed emesis induced by initial and subsequent cyles of cisplatinum-based chemotherapy: effects of antiemetics. J Clin Pharmacol. 1993;33:691–7.

    PubMed  CAS  Google Scholar 

  100. De Wit R, Schmitz PIM, Verweij J, et al. Analysis of cumulative probabilities show, that the efficacy of 5-HT3 antagonist prophylaxis is not maintained. J Clin Oncol. 1996;14:644–51.

    PubMed  Google Scholar 

  101. Csillik-Perczel V, Bakonyi A, Yemane T, et al. GYKI-46903, a non-competitive antagonist for 5-HT3 receptors. Pharmacol Toxicol. 1996;79:32–9.

    PubMed  CAS  Google Scholar 

  102. Rojas C, Stathis M, Thomas AG, et al. Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anaesth Analg. 2008;107:469–78.

    CAS  Google Scholar 

  103. Rojas C, Slusher BS. Pharmacological mechanisms of 5-HT3 and tachykinin NK1 receptor antagonism to prevent chemotherapy-induced nausea and vomiting. Eur J Pharmacol. 2012;684:1–7.

    PubMed  CAS  Google Scholar 

  104. Saito M, Aogi K, Sekine I, et al. Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy: a double-blind, double-dummy, randomized, comparative Phase III trial. Lancet Oncol. 2009;10:115–24.

    PubMed  CAS  Google Scholar 

  105. Borison HL, McCarthy LE. Neuropharmacology of chemotherapy-induced emesis. Drugs. 1983;25 Suppl 1:8–17.

    PubMed  CAS  Google Scholar 

  106. Cubeddu LX, Hoffmann IS, Fuenmayor NT, Finn AL. Efficacy of ondansetron (GR 38032) and the role of serotonin in cisplatin-induced nausea and vomiting. N Engl J Med. 1990;322:810–6.

    PubMed  CAS  Google Scholar 

  107. Fetting J, Grochow LB, Folstein MF, Ettinger DS, Colvin M. The course of nausea and ­vomiting after high-dose cyclophosphamide. Cancer Treat Rep. 1982;66:1487–93.

    PubMed  CAS  Google Scholar 

  108. Beck TM. The pattern of emesis following high-dose cyclophosphamide and the antiemetic efficacy of ondansetron. Anti Cancer Drugs. 1995;6:237–42.

    PubMed  CAS  Google Scholar 

  109. Martin M, Diaz-Rubio E, Sánchez A, Almenarez J, López-Vega JM. The natural course of emesis after carboplatin treatment. Acta Oncol. 1990;29:593–5.

    PubMed  CAS  Google Scholar 

  110. Herrstedt J, Sigsgaard T, Handberg J, Schousboe BMB, Hansen M, Dombernowsky P. Randomized, double-blind comparison of ondansetron versus ondansetron plus metopimazine as antiemetic prophylaxis during platinum-based chemotherapy in patients with cancer. J Clin Oncol. 1997;15:1690–6.

    PubMed  CAS  Google Scholar 

  111. Hesketh PJ, Warr DG, Street JC, Carides AD. Differential time course of action of the 5-HT3 and NK1 receptor antagonists when used with highly and moderately emetogenic chemotherapy (HEC and MEC). Support Care Cancer. 2011;19:1297–302.

    PubMed  Google Scholar 

  112. Blier P. Crosstalk between the norepinephrine and serotonin systems and its role in antidepressant response. J Psychiatry Neurosci. 2001;26(Suppl):S3–10.

    PubMed  Google Scholar 

  113. Di Giovanni G, Esposito E, Di Matteo V. Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther. 2010;16:179–94.

    PubMed  Google Scholar 

  114. Werkman TR, McCreary AC, Kruse CG, Wadman WJ. NK3 receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and guinea pig. Synapse. 2011;65:814–26.

    PubMed  CAS  Google Scholar 

  115. Jovanovic-Micic D, Samardzic R, Beleslin DB. The role of α-adrenergic mechanisms within the area postrema in dopamine-induced emesis. Eur J Pharmacol. 1995;272:21–30.

    PubMed  CAS  Google Scholar 

  116. Rojas C, Li Y, Zhang J, et al. The antiemetic 5-HT3 receptor antagonist palonosetron inhibits substance P-mediated responses in vitro and in vivo. J Pharmacol Exp Ther. 2010;335:362–8.

    PubMed  CAS  Google Scholar 

  117. Darmani NA, Chebolu S, Amos B, Alkam T. Synergistic antiemetic interactions between serotonergic 5-HT3 and tachykininergic NK1-receptor antagonists in the last shrew (Cryptotis parva). Pharmacol Biochem Behav. 2011;99:573–9.

    PubMed  CAS  Google Scholar 

  118. Goodman LS, Wintrobe MM, Dameshek W, et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc. 1946;132:126–32.

    PubMed  CAS  Google Scholar 

  119. Justin-Besancon L, Laville C. Antiemetic action of metoclopramide with respect to apomorphine and hydergine. C R Seances Soc Biol Fil. 1964;158:723–7.

    PubMed  CAS  Google Scholar 

  120. Roila F, Herrstedt J, Aapro M, et al. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol. 2010;21 Suppl 5:v232–43.

    PubMed  Google Scholar 

  121. Ho CM, et al. Dexamethasone has a central antiemetic mechanism in decerebrated cats. Anesth Analg. 2004;99:734–9.

    PubMed  CAS  Google Scholar 

  122. Suzuki T, et al. Inhibitory effect of glucocorticoids on human-cloned 5-hydroxy- tryptamine3A receptor expressed in xenopus oocytes. Anesthesiology. 2004;101:660–5.

    PubMed  CAS  Google Scholar 

  123. Navari RM, Gray SE, Kerr AC. Olanzapine versus aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a randomized phase III trial. J Support Oncol. 2011;9:188–95.

    PubMed  CAS  Google Scholar 

  124. Herrstedt J, Summers YJ, Daugaard G et al. The dopamine D2/D3 receptor antagonist APD421 in combination with ondansetron effectively prevents acute cisplatin-induced nausea and vomiting (CINV). Ann Oncol. 2012;23(suppl 9):ix507.

    Google Scholar 

  125. Kaiser R, Sezer O, Papies A, et al. Patient-tailored antiemetic treatment with 5- hydroxytryptamine type 3 receptor antagonists according to cytochrome P-450 2D6 genotypes. J Clin Oncol. 2003;20:2805–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørn Herrstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, P.H., Palshof, J., Herrstedt, J. (2013). Nausea and Vomiting. In: Sonis, S., Keefe, D. (eds) Pathobiology of Cancer Regimen-Related Toxicities. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5438-0_6

Download citation

Publish with us

Policies and ethics