Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 777))

Abstract

Prominin molecules represent a new family of pentaspan membrane glycoproteins expressed throughout the animal kingdom. The name originates from its localization on membrane protrusion, such as microvilli, filopodia, lamellipodia, and microspikes. Following the original description in mouse and human, representative prominin members were found in fish (e.g., Danio rerio), amphibian (Ambystoma mexicanum, Xenopus laevis), worm (Caenorhabditis elegans), and flies (Drosophila melanogaster). Mammalian prominin-1 was identified as a marker of somatic and cancer stem cells and plays an essential role in the visual system, which contributed to increased interest of the medical field in this molecule. Here we summarize recent data from various fields, including Drosophila, which will aid to our understanding of its still elusive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fargeas CA, Fonseca AV, Huttner WB, Corbeil D (2006) Prominin-1 (CD133): from progenitor cells to human diseases. Future Lipid 1:213–225

    Article  CAS  Google Scholar 

  2. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  3. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  5. Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430

    Article  PubMed  CAS  Google Scholar 

  6. Florek M, Haase M, Marzesco A-M, Freund D, Ehninger G et al (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26

    Article  PubMed  CAS  Google Scholar 

  7. Jászai J, Janich P, Farkas LM, Fargeas CA, Huttner WB et al (2007) Differential expression of prominin-1 (CD133) and prominin-2 in major cephalic exocrine glands of adult mice. Histochem Cell Biol 128:409–419

    Article  PubMed  Google Scholar 

  8. Karbanová J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P et al (2008) The stem cell marker CD133 (prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 56:977–993

    Article  PubMed  Google Scholar 

  9. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    PubMed  CAS  Google Scholar 

  10. Corbeil D, Joester A, Fargeas CA, Jászai J, Garwood J et al (2009) Expression of distinct splice variants of the stem cell marker prominin-1 (CD133) in glial cells. Glia 57:860–874

    Article  PubMed  Google Scholar 

  11. Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB et al (2004) Identification of novel prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. J Cell Sci 117:4301–4311

    Article  PubMed  CAS  Google Scholar 

  12. Kemper K, Tol MJ, Medema JP (2010) Mouse tissues express multiple splice variants of prominin-1. PLoS One 5:e12325

    Article  PubMed  Google Scholar 

  13. Röper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  PubMed  Google Scholar 

  14. Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  PubMed  CAS  Google Scholar 

  15. Florek M, Bauer N, Janich P, Wilsch-Bräuninger M, Fargeas CA et al (2007) Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into the urine. Cell Tissue Res 328:31–47

    Article  PubMed  CAS  Google Scholar 

  16. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC et al (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34

    Article  PubMed  CAS  Google Scholar 

  17. Fargeas CA, Huttner WB, Corbeil D (2007) Nomenclature of prominin-1 (CD133) splice variants – an update. Tissue Antigens 69:602–606

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Q, Zulfiqar F, Xiao X, Riazuddin SA, Ahmad Z et al (2007) Severe retinitis pigmentosa mapped to 4p15 and associated with a novel mutation in the PROM1 gene. Hum Genet 122:293–299

    Article  PubMed  CAS  Google Scholar 

  19. Pras E, Abu A, Rotenstreich Y, Avni I, Reish O et al (2009) Cone-rod dystrophy and a frameshift mutation in the PROM1 gene. Mol Vis 15:1709–1716

    PubMed  CAS  Google Scholar 

  20. Permanyer J, Navarro R, Friedman J, Pomares E, Castro-Navarro J et al (2010) Autosomal recessive retinitis pigmentosa with early macular affectation caused by premature truncation in PROM1. Invest Ophthalmol Vis Sci 51:2656–2663

    Article  PubMed  Google Scholar 

  21. Yang Z, Chen Y, Lillo C, Chien J, Yu Z et al (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118:2908–2916

    Article  PubMed  CAS  Google Scholar 

  22. Michaelides M, Gaillard MC, Escher P, Tiab L, Bedell M et al (2010) The PROM1 mutation p.R373C causes an autosomal dominant bull’s eye maculopathy associated with rod, rod-cone, and macular dystrophy. Invest Ophthalmol Vis Sci 51:4771–4780

    Article  PubMed  Google Scholar 

  23. Michaelides M, Johnson S, Poulson A, Bradshaw K, Bellmann C et al (2003) An autosomal dominant bull’s-eye macular dystrophy (MCDR2) that maps to the short arm of chromosome 4. Invest Ophthalmol Vis Sci 44:1657–1662

    Article  PubMed  Google Scholar 

  24. Arrigoni FI, Matarin M, Thompson PJ, Michaelides M, McClements ME et al (2011) Extended extraocular phenotype of PROM1 mutation in kindreds with known autosomal dominant macular dystrophy. Eur J Hum Genet 19:131–137

    Article  PubMed  Google Scholar 

  25. Jászai J, Fargeas CA, Florek M, Huttner WB, Corbeil D (2007) Focus on molecules: prominin-1 (CD133). Exp Eye Res 85:585–586

    Article  PubMed  Google Scholar 

  26. Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–508

    Article  PubMed  CAS  Google Scholar 

  27. Boesze-Battaglia K, Hennessey T, Albert AD (1989) Cholesterol heterogeneity in bovine rod outer segment disk membranes. J Biol Chem 264:8151–8155

    PubMed  CAS  Google Scholar 

  28. Chuang JZ, Zhao Y, Sung CH (2007) SARA-regulated vesicular targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 130:535–547

    Article  PubMed  CAS  Google Scholar 

  29. Obata S, Usukura J (1992) Morphogenesis of the photoreceptor outer segment during postnatal development in the mouse (BALB/c) retina. Cell Tissue Res 269:39–48

    Article  PubMed  CAS  Google Scholar 

  30. Sung CH, Chuang JZ (2010) The cell biology of vision. J Cell Biol 190:953–963

    Article  PubMed  CAS  Google Scholar 

  31. Zacchigna S, Oh H, Wilsch-Bräuninger M, Missol-Kolka E, Jászai J et al (2009) Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29:2297–2308

    Article  PubMed  CAS  Google Scholar 

  32. Bidlingmaier S, Zhu X, Liu B (2008) The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med 86:1025–1032

    Article  PubMed  CAS  Google Scholar 

  33. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48

    Article  PubMed  Google Scholar 

  34. Williams DS, Linberg KA, Vaughan DK, Fariss RN, Fisher SK (1988) Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. J Comp Neurol 272:161–176

    Article  PubMed  CAS  Google Scholar 

  35. Vaughan DK, Fisher SK (1989) Cytochalasin D disrupts outer segment disc morphogenesis in situ in rabbit retina. Invest Ophthalmol Vis Sci 30:339–342

    PubMed  CAS  Google Scholar 

  36. Rattner A, Smallwood PM, Williams J, Cooke C, Savchenko A et al (2001) A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron 32:775–786

    Article  PubMed  CAS  Google Scholar 

  37. Rattner A, Chen J, Nathans J (2004) Proteolytic shedding of the extracellular domain of photoreceptor cadherin. Implications for outer segment assembly. J Biol Chem 279:42202–42210

    Article  PubMed  CAS  Google Scholar 

  38. Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581:1783–1787

    Article  PubMed  CAS  Google Scholar 

  39. McGrail M, Batz L, Noack K, Pandey S, Huang Y et al (2010) Expression of the zebrafish CD133/prominin1 genes in cellular proliferation zones in the embryonic central nervous system and sensory organs. Dev Dyn 239:1849–1857

    Article  PubMed  CAS  Google Scholar 

  40. Jászai J, Fargeas CA, Graupner S, Tanaka EM, Brand M et al (2011) Distinct and conserved prominin-1/CD133–positive retinal cell populations identified across species. PLoS One 6:e17590

    Article  PubMed  Google Scholar 

  41. Han Z, Papermaster DS (2011) Identification of three prominin homologs and characterization of their messenger RNA expression in Xenopus laevis tissues. Mol Vis 17:1381–1396

    PubMed  CAS  Google Scholar 

  42. Röhlich P, Szél A (2000) Photoreceptor cells in the Xenopus retina. Microsc Res Tech 50:327–337

    Article  PubMed  Google Scholar 

  43. Fargeas CA, Florek M, Huttner WB, Corbeil D (2003) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596

    Article  PubMed  CAS  Google Scholar 

  44. Han Z, Anderson DW, Papermaster DS (2012) Prominin-1 localizes to the open rims of outer segment lamellae in Xenopus laevis rod and cone photoreceptors. Invest Ophthalmol Vis Sci 53:361–373

    Article  PubMed  CAS  Google Scholar 

  45. Albert AD, Boesze-Battaglia K (2005) The role of cholesterol in rod outer segment membranes. Prog Lipid Res 44:99–124

    Article  PubMed  CAS  Google Scholar 

  46. Goldberg AF (2006) Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol 253:131–175

    Article  PubMed  CAS  Google Scholar 

  47. Farjo R, Naash MI (2006) The role of Rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet 27:117–122

    Article  PubMed  Google Scholar 

  48. Arikawa K, Molday LL, Molday RS, Williams DS (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 116:659–667

    Article  PubMed  CAS  Google Scholar 

  49. Damek-Poprawa M, Krouse J, Gretzula C, Boesze-Battaglia K (2005) A novel tetraspanin fusion protein, peripherin-2, requires a region upstream of the fusion domain for activity. J Biol Chem 280:9217–9224

    Article  PubMed  CAS  Google Scholar 

  50. Zelhof AC, Hardy RW, Becker A, Zuker CS (2006) Transforming the architecture of compound eyes. Nature 443:696–699

    Article  PubMed  CAS  Google Scholar 

  51. Demontis F, Dahmann C (2007) Apical and lateral cell protrusions interconnect epithelial cells in live Drosophila wing imaginal discs. Dev Dyn 236:3408–3418

    Article  PubMed  CAS  Google Scholar 

  52. Hardie R (2001) Phototransduction in Drosophila melanogaster. J Exp Biol 204:3403–3409

    PubMed  CAS  Google Scholar 

  53. Knust E (2007) Photoreceptor morphogenesis and retinal degeneration: lessons from Drosophila. Curr Opin Neurobiol 17:541–547

    Article  PubMed  CAS  Google Scholar 

  54. Cook T, Zelhof A, Mishra M, Nie J (2011) 800 facets of retinal degeneration. Prog Mol Biol Transl Sci 100:331–368

    Article  PubMed  CAS  Google Scholar 

  55. Dickson B, Hafen E (1993) Genetic dissection of eye development in Drosophila. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster. CSHL Press, NewYork, pp 1327–1362

    Google Scholar 

  56. Wolken JJ, Mellon AD, Contis G (1957) Photoreceptor structures. II. Drosophila melanogaster. J Exp Zool 134:383–409

    Article  PubMed  CAS  Google Scholar 

  57. Arikawa K, Hicks JL, Williams DS (1990) Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J Cell Biol 110:1993–1998

    Article  PubMed  CAS  Google Scholar 

  58. Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362

    Article  PubMed  CAS  Google Scholar 

  59. Cagan R (2009) Principles of Drosophila eye differentiation. Curr Top Dev Biol 89:115–135

    Article  PubMed  CAS  Google Scholar 

  60. Waddington CH, Perry MM (1960) The ultrastructure of the developing eye of Drosophila. Proc Roy Soc B 153:155–178

    Article  Google Scholar 

  61. Longley RL, Ready DF (1995) Integrins and the development of three-dimensional structure in the Drosophila compound eye. Dev Biol 171:415–433

    Article  PubMed  CAS  Google Scholar 

  62. Cook B, Zelhof AC (2008) Photoreceptors in evolution and disease. Nat Genet 40:1275–1276

    Article  PubMed  CAS  Google Scholar 

  63. Husain N, Pellikka M, Hong H, Klimentova T, Choe KM et al (2006) The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev Cell 11:483–493

    Article  PubMed  CAS  Google Scholar 

  64. Richard M, Roepman R, Aartsen WM, van Rossum AG, den Hollander AI et al (2006) Towards understanding CRUMBS function in retinal dystrophies. Hum Mol Genet 15:R235–R243

    Article  PubMed  CAS  Google Scholar 

  65. Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unraveling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176:2189–2200

    Article  PubMed  CAS  Google Scholar 

  66. Izaddoost S, Nam SC, Bhat MA, Bellen HJ, Choi KW (2002) Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 416:178–183

    Article  PubMed  CAS  Google Scholar 

  67. Bulgakova NA, Knust E (2009) The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 122:2587–2596

    Article  PubMed  CAS  Google Scholar 

  68. Reinke R, Zipursky SL (1988) Cell-cell interaction in the Drosophila retina: the bride of sevenless gene is required in photoreceptor cell R8 for R7 cell development. Cell 55:321–330

    Article  PubMed  CAS  Google Scholar 

  69. Van Vactor D Jr, Krantz DE, Reinke R, Zipursky SL (1988) Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52:281–290

    Article  PubMed  Google Scholar 

  70. Krantz DE, Zipursky SL (1990) Drosophila chaoptin, a member of the leucine-rich repeat family, is a photoreceptor cell-specific adhesion molecule. EMBO J 9:1969–1977

    PubMed  CAS  Google Scholar 

  71. Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF et al (2006) Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet 38:1440–1445

    Article  PubMed  CAS  Google Scholar 

  72. Collin RW, Littink KW, Klevering BJ, van den Born LI, Koenekoop RK et al (2008) Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am J Hum Genet 83:594–603

    Article  PubMed  CAS  Google Scholar 

  73. Abd El-Aziz MM, Barragan I, O’Driscoll CA, Goodstadt L, Prigmore E et al (2008) EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 40:1285–1287

    Article  PubMed  CAS  Google Scholar 

  74. Xia H, Ready DF (2011) Ectoplasm, ghost in the R cell machine? Dev Neurobiol 71:1246–1257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shirin Meher Pocha for critical comments on the manuscript. D.C. and E.K. are supported by the Deutsche Forschungsgemeinschaft SFB655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Knust Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gurudev, N., Florek, M., Corbeil, D., Knust, E. (2013). Prominent Role of Prominin in the Retina. In: Corbeil, D. (eds) Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology. Advances in Experimental Medicine and Biology, vol 777. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5894-4_4

Download citation

Publish with us

Policies and ethics