Skip to main content

The Cerebellum as a Predictive Model of the Motor System: A Smith Predictor Hypothesis

  • Chapter
Neural Control of Movement

Summary

The performance of motor systems with large feedback delays can be significantly enhanced by the use of internal predictive representations of the motor apparatus. The cerebellum is a likely site for these internal models, and we show that ataxic patients appear to have reduced awareness of the hand position during movement, suggesting that a sensory predictor within the cerebellum is impaired. We recently suggested that the cerebellum holds two types of neural model which together form a ‘Smith Predictor’. One is a model of the motor apparatus (limbs and muscles) which provides a rapid prediction of the sensory consequences of each movement. The other model is of the time delays in the feedback control loop (conductance delays, muscle latencies, sensory processing). This delays a copy of the rapid prediction, so that it can be compared with actual sensory feedback; any errors are then used both to correct the movement and to update the internal representations of the motor apparatus. We propose mechanisms by which both parts of the Smith Predictor could be formed within the cerebellum, and present a neural network simulation based on these ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G. and Armstrong, D.M. (1987). Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. Journal of Physiology (London), 385, 107-134.

    CAS  Google Scholar 

  • Barto, A.G. (1989). From chemotaxis to cooperativity: Abstract exercises in neuronal learning strategies. In R. Durbin, R.C. Miall, and G. Mitchison (Eds.), The computing neuron (pp. 73–98). Wokingham: Addison-Wesley.

    Google Scholar 

  • Barto, A.G. (1990). Connectionist Learning for Control: An Overview. In T. Miller, R.S. Sutton, and P.J. Werbos (Eds.), Neural networks for control (pp. 5–58). Cambridge, Mass: MIT Press.

    Google Scholar 

  • Braitenberg, V. (1961). Functional interpretation of cerebellar histology. Nature, 190, 539–540.

    Article  Google Scholar 

  • Crepel, F. and Jaillard, D. (1991). Pairing of pre-and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. Journal of Physiology (London), 432, 123–141.

    CAS  Google Scholar 

  • D’Ascanio, P., Manzoni, D., and Pompeiano, O. (1991). Changes in gain of vestibulospinal reflexes after local injection of Beta-adrenergic substances in the cerebellar vermis of decerebrate cats. Acta Oto-Laryngologica, 111, 247–250.

    Article  Google Scholar 

  • Deno, D.C., Keller, E.L., and Crandall, W.F. (1989). Dynamical neural network organization of the visual pursuit system. IEEE Transactions on Biomedical Engineering, 36, 85–92.

    Article  PubMed  CAS  Google Scholar 

  • Desmond, J.E. and Moore, J.W. (1988). Adaptive timing in neural networks: The conditioned response. Biological Cybernetics, 58, 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Gellman, R.S., Gibson, A., and Houk, J.C. (1985). Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. Journal of Neurophysiology, 54, 40–60.

    PubMed  CAS  Google Scholar 

  • Gilbert, P.F.C. (1975). How the cerebellum could memorise movements. Nature, 254, 688–689.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, P.F.C. and Thach, W.T. (1977). Purkinje cell activity during motor learning. Brain Research, 128, 309–328.

    Article  PubMed  CAS  Google Scholar 

  • Haggard, P.N., Miall R.C., Wade, D.T., Anslow, P., Renowden, S., Fowler, S. and Stein, J.F. (1994) Damage to cerebellocortical pathways following closed head injury: an MRI and behavioural study. Neurosurgery and Psychiatry (in Press).

    Google Scholar 

  • Houk, J.C. (1990). Role of cerebellum in classical conditioning. Society of Neuroscience Abstracts, 16, 205.8 (Abstract)

    Google Scholar 

  • Houk, J.C., Singh, S.P., Fisher, C. and Barto A.G. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In T. Miller, R.S. Sutton, and P.J. Werbos (Eds.), Neural networks for control (pp. 301–348). Cambridge, Mass: MIT Press.

    Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.

    Google Scholar 

  • Ito, M. (1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M.I. and Rumelhart, D.E. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.

    Article  Google Scholar 

  • Miall, R.C., Kerr, G.K., Wolpert, D.M., and Forsyth, D. (1990). Adaptation to task dynamics and visual feedback in human visually guided movements. Neuroscience Letters Supplement, 38, S51.

    Google Scholar 

  • Miall, R.C., Weir, D.J., Wolpert, D.M. and Stein, J.F. (1993a). Is the cerebellum a Smith Predictor? Journal of Motor Behaviour, 25, 203–216.

    Article  CAS  Google Scholar 

  • Miall, R.C., Weir, D.J., and Stein, J.F. (1993b). Intermittency in human manual tracking tasks. Journal of Motor Behavior, 25, 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Miall, R.C., Haggard, P.N., and Stein, J.F. (1993c) Visuo-motor pursuit movements in ataxic patients with cerebellar damage. Journal of Physiology (London), 473, 24P.

    Google Scholar 

  • Rumelhart, D. and McClelland, J. (1986) Parallel distributed processing. MIT Press, Cambridge Mass.

    Google Scholar 

  • Smith, O.J.M. (1959). A controller to overcome dead time. ISA Journal, 6, 28–33.

    Google Scholar 

  • Stein, J.F. and Glickstein, M. (1992) The role of the cerebellum in the visual guidance of movement. Physiological Reviews, 72, 967–1017.

    PubMed  CAS  Google Scholar 

  • Strata, P. (1989). The olivocerebellar system in motor control.Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Van Neerven, J., Pompeiano, O., Collewijn, H., and Van der Steen, J. (1990). Injections of beta-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Experimental Brain Research, 79, 249–260.

    Article  Google Scholar 

  • Weiss, C., Houk, J.C., and Gibson, A.R. (1990). Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of the red nucleus. Journal of Neurophysiology, 64, 1170–1185.

    PubMed  CAS  Google Scholar 

  • Wolpert, D.M., Miall, R.C., Cumming, B.C. and Boniface, SJ. (1993). Retinal adaptation of visual processing time delays. Vision Research, 33, 1421–1430.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, D.M. (1992) Overcoming time delays in visuo-motor control. D.Phil. Thesis, Lincoln College, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miall, R.C., Wolpert, D.M. (1995). The Cerebellum as a Predictive Model of the Motor System: A Smith Predictor Hypothesis. In: Ferrell, W.R., Proske, U. (eds) Neural Control of Movement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1985-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1985-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5818-3

  • Online ISBN: 978-1-4615-1985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics