Skip to main content

The Use of Molecular and Biochemical Markers in Crop Evolution Studies

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 27))

Abstract

When de Candolle (1882) initiated the study of crop evolution, his major concern was to identify the geographic origin, i.e., the domestication center, of individual crops. In his opinion, the following four types of data would shed light on this question: (1) archaeology; (2) botany; (3) philology or linguistics; and (4) history. Of these four types of data, the first two are the most reliable (Harlan and de Wet, 1973). Archaeological remains attested to the antiquity of the cultivation of a crop in a region compared to other regions devoid of archaeological remains. Botanical arguments referred to the existence in a defined region of a wild-growing form that was sufficiently similar morphologically to the crop that it could represent its ancestral form (or at least the immediate descendant of the ancestral form). The existence of words designating a particular crop, particularly in native languages, was considered a testimony to the relative antiquity of cultivation of the crop. Finally, historical description, such as the treatises of Dioscorides and Theophrastus, the herbals of the 16th and 17th centuries, or descriptions of the New World shortly after the Spanish Conquista by, for example, Cieza de León (1541 –1550) or Acosta (1590), also would provide some evidence toward identifying the area of origin of crops.

No doubt man selects varying individuals, sows their seeds, and again selects their varying offspring . . . Man therefore may be said to have been trying an experiment on a gigantic scale; and it is an experiment which nature during the long lapse of time has incessantly tried. . . C. Darwin (1868), The Variation of Animals and Plants under Domestication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta, J. De, 1590, Historia natural y moral de las Indias, Juan de León, Sevilla [Modem ed., Valencia Cultural, Valencia, Spain].

    Google Scholar 

  • Allard, R. W., 1988, Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild relatives, J. Hered. 79:225–238.

    PubMed  CAS  Google Scholar 

  • Ammerman, A. J., and Cavalli-Sforza, L. L., 1984, The Neolithic Transition and the Genetics of Populations in Europe, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Anderson, S. M., and McDonald, J. F., 1983, Biochemical and molecular analysis of naturally occurring Adh variants in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 80:4798–4802.

    Article  PubMed  CAS  Google Scholar 

  • Apuya, N. R., Frazier, B. L., Keim, P., Roth, E. J., and Lark, K. G., 1988, Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill, Theor. Appl. Genet. 75:889–901.

    CAS  Google Scholar 

  • Asins, M. J., and Carbonell, E. A., 1986, A comparative study on variability and phylogeny of Triticum species. 2. Interspecific relationships, Theor. Appl. Genet. 72:551–558.

    Article  Google Scholar 

  • Baudoin, J. P., 1988, Genetic resources, domestication and evolution of lima bean, Phaseolus lunatus, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 393–407, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Beadle, G. W., 1972, The mystery of maize, Field Mus. Nat. Hist. Bull. 43:2–11.

    Google Scholar 

  • Bliss, F. A., 1980, Common bean, in: Hybridization of Crop Plants (W. R. Fehr and H. H. Hadley, eds.), pp. 273–284, Crop Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Bonierbale, M., Plaisted, R. L., and Tanksley, S. D., 1988, RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato, Genetics 120:1095–1103.

    PubMed  CAS  Google Scholar 

  • Brown, A. H. D., and Munday, J., 1982, Population genetic structure and optimal sampling of landraces of barley from Iran, Genetica 58:85–96.

    Article  Google Scholar 

  • Brücher, H., 1988, The wild ancestor of Phaseolus vulgaris in South America, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 185–214, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Burkart, A., and Brücher, H., 1953, Phaseolus aborigineus Burkart, die mutmassliche andine Stammform der Kulturbohne, Züchter 23:65–72.

    Google Scholar 

  • Chang, C., Bowman, J. L., Dejohn, A. W., Lander, E. S., and Meyerowitz, E. M., 1988, Restriction fragment length polymorphism linkage map for Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA 85:6856–6860.

    Article  CAS  Google Scholar 

  • Chase, C. D., Ortega, V. M., and Vallejos, C. E., 1991, DNA restriction fragment length polymorphisms correlate with isozyme diversity in Phaseolus vulgaris L, Theor. Appl. Genet. 81:806–811.

    Article  CAS  Google Scholar 

  • Chung, J. H., and Stevenson, E., 1973, Diallel analysis of the genetic variation in some quantitative traits in dry beans, N. Z. J. Agric. Res. 16:223–231.

    Google Scholar 

  • Cieza De Leon, P. De, 1541–1550, La crónica del Perú, Espasa-Calpe, Madrid.

    Google Scholar 

  • Clegg, M. T., 1990, Molecular diversity in plant populations, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weir, eds.), pp. 98–115, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Clegg, M. T., Brown, A. H. D., and Whitfeld, P. R., 1984, Chloroplast DNA diversity in wild and cultivated barley: Implications for genetic conservation, Genet. Res. 43:339–343.

    Article  CAS  Google Scholar 

  • Cordesse, F., Second, G., and Delseny, M., 1990, Ribosomal gene spacer length variability in cultivated and wild rice species, Theor. Appl. Genet. 79:81–88.

    Article  CAS  Google Scholar 

  • Coyne, D. P., 1966, A mutable gene system in Phaseolus vulgaris L., Crop Sci. 6:307–310.

    Article  Google Scholar 

  • Coyne, D. P., 1967, Photoperiodism: Inheritance and linkage studies in Phaseolus vulgaris, J. Hered. 58:313–314.

    Google Scholar 

  • Coyne, J., and Lande, R., 1985, The genetic basis of species differences in plants, Am. Nat. 126:141–145.

    Article  Google Scholar 

  • Crow, J. F., and Kimura, M., 1970, An Introduction to Population Genetics Theory, Harper and Row, New York.

    Google Scholar 

  • Curtis, S. E., and Clegg, M. T., 1984, Molecular evolution of chloroplast DNA sequences, Mol. Biol. Evol. 1:291–301.

    PubMed  CAS  Google Scholar 

  • Dallas, J. F., 1988, Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe, Proc. Natl. Acad. Sci. USA 85:6831–6835.

    Article  PubMed  CAS  Google Scholar 

  • Dally, A. M., and Second, G., 1990, Chloroplast DNA diversity in wild and cultivated species of rice (genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis, Theor. Appl. Genet. 80:209–222.

    Article  CAS  Google Scholar 

  • Debouck, D. G., 1991, Systematics and morphology, in: Common Beans; Research for Crop Improvement (A. Van Schoonhoven and O. Voysest, eds.), pp. 55–118, CAB, Wallingford, England.

    Google Scholar 

  • Debouck, D. G., Castillo T., R., and Tohme, J. M., 1989a, Observations of little-known Phaseolus germplasm of Ecuador, Plant Genet. Res. Newsl. 80:15–21.

    Google Scholar 

  • Debouck, D. G., Maquet, A., and Posso, C. E., 1989b, Biochemical evidence for two different gene pools in lima beans, Annu. Rep. Bean Improv. Coop. 32:58–59.

    Google Scholar 

  • De Candolle, A., 1882, L’origine des plantes cultivées [The Origin of Cultivated Plants, Appleton, New York].

    Google Scholar 

  • Delgado Salinas, A., 1985, Systematics of the genus Phaseolus (Leguminosae) in North and Central America, Ph.D. thesis, University of Texas, Austin, Texas.

    Google Scholar 

  • Delgado Salinas, A., 1988, Variation, taxonomy, domestication, and germplasm potentialities in Phaseolus coccineus. in: Genetic resources of Phaseolus beans (P. Gepts, ed.) pp. 441–463, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Delgado Salinas, A., Bonet, A., and Gepts, P., 1988, The wild relative of Phaseolus vulgaris in Middle America, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 163–184, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Delseny, M., McGrath, J. M., This, P., Chevre, A. M., and Quiros, C. F., 1990, Ribosomal RNA genes in diploid and amphidiploid Brassica and related species: Organization, polymorphism, and evolution, Genome 33:733–744.

    Article  CAS  Google Scholar 

  • Dickson, M. H., and Petzoldt, R., 1988, Deleterious effects of white seed due to p gene in beans, J. Am. Soc. Hortic. Sci. 113:111–114.

    Google Scholar 

  • Doebley, J., 1989, Isozymic evidence and the evolution of crop plants, in: Isozymes in Plant Biology (D. E. Soltis and P. S. Soltis, eds.), pp. 165–169, Dioscorides, Portland, Oregon.

    Chapter  Google Scholar 

  • Doebley, J., 1990, Molecular systematics of Zea (Gramineae), Maydica 35:143–150.

    Google Scholar 

  • Doebley, J., 1992, Molecular systematics and crop evolution, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 202–222, Chapman Hall, New York.

    Chapter  Google Scholar 

  • Doebley, J., and Stec, A., 1991, Genetic analysis of the morphological differences between maize and teosinte, Genetics 129:285–295.

    PubMed  CAS  Google Scholar 

  • Doebley, J. F., Goodman, M. M., and Stuber, C. W., 1984, Isoenzymatic variation in Zea (Gramineae). Syst. Bot. 9:203–218.

    Article  Google Scholar 

  • Doebley, J. F., Goodman, M. M., and Stuber, C. W., 1985, Isozyme variation in the races of maize from Mexico. Am. J. Bot. 72:629–639.

    Article  CAS  Google Scholar 

  • Doebley, J., Renfroe, W., and Blanton, A., 1987, Restriction site variation in the Zea chloroplast genome, Genetics 117:139–147.

    PubMed  CAS  Google Scholar 

  • Doebley, J. F., Wendel, J. D., Smith, J. S. C., Stuber, C. W., and Goodman, M. M., 1988, The origin of cornbelt maize: The isozyme evidence, Econ. Bot. 42:120–131.

    Article  Google Scholar 

  • Doebley, J., Stec, A., Wendel, J., and Edwards, M., 1990, Genetic and morphological analysis of a maize-teosinte F2 population: Implications for the origin of maize, Proc. Natl. Acad. Sci. USA 87:9888–9892.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. J., 1988, 5S ribosomal gene variation in the soybean and its progenitor. Theor. Appl. Genet. 75:621–624.

    Article  CAS  Google Scholar 

  • Doyle, J. J., and Beachy, R. N., 1985, Ribosomal gene variation in soybean (Glycine) and its relatives, Theor. Appl. Genet. 70:369–376.

    CAS  Google Scholar 

  • Duvall, M. R., and Doebley, J. F., 1990, Restriction site variation in the chloroplast genome of Sorghum (Poaceae), Syst. Bot. 15:472–480.

    Article  Google Scholar 

  • Duvick, D. N., 1984, Genetic diversity in major farm crops on the farm and in reserve, Econ. Bot. 38:161–178.

    Article  Google Scholar 

  • Dvořák, J., 1988, Cytogenetical and molecular inferences about the evolution of wheat, in: 7th International Wheat Genetics Symposium, Vol. 1 (T. E. Miller and R. M. D. Koebner, eds.), pp. 187–192, Institute Plant Science Research, Cambridge, England.

    Google Scholar 

  • Dvořák, J., and Appels, R., 1982, Genome and nucleotide differentiation in genomes of polyploid Triticum species, Theor. Appl. Genet. 63:349–360.

    Article  Google Scholar 

  • Dvořák, J., and Zhang, H.-B., 1990, Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes, Proc. Natl. Acad. Sci. USA 87:9640–9644.

    Article  PubMed  Google Scholar 

  • Dvořák, J., McGuire, P. E., and Cassidy, B., 1988, Apparent sources of the A genomes of wheat inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences, Genome 30:680–689.

    Article  Google Scholar 

  • Endo, T., and Morishima, H., 1983, Rice, in: Isozymes in Plant Genetics and Breeding, Vol. B, (S. D. Tanksley and T. J. Orton, eds.), pp. 129–146, Elsevier, Amsterdam.

    Google Scholar 

  • Erickson, L. R., N. A., Straus, and Beversdorf, W. D., 1983, Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. Theor. Appl. Genet. 65:201–206.

    Article  CAS  Google Scholar 

  • Evans, A. M., 1976, Beans, in: Evolution of Crop Plants (N. W. Simmonds, ed.), pp. 168–172, Longman, London.

    Google Scholar 

  • Evans, A. M., 1980, Structure, variation, evolution, and classification in Phaseolus, 347. in: Advances in Legume Science. (R. J. Summerfield and A. H. Bunting eds.), pp. 337–347, Royal Botanic Gardens, Kew, England.

    Google Scholar 

  • Figdore, S., Kennard, W. C., Song, K. M., Slocum, M. K., and Osborn, T. C., 1988, Assessment of the degree of restriction fragment length polymorphism in Brassica, Theor. Appl. Genet. 75:833–840.

    CAS  Google Scholar 

  • Fisher, R. A., 1958, The genetical theory of natural selection. Dover, New York.

    Google Scholar 

  • Furnier, G., Cummings, M. P., and Clegg, M. T., 1990, Evolution of the avocados as revealed by DNA restriction fragment variation, J. Hered. 81:183–188.

    CAS  Google Scholar 

  • Galinat, W. C., 1971, The origin of maize, Annu. Rev. Genet. 5:447–478.

    Article  PubMed  CAS  Google Scholar 

  • Gayler, K. R., and Sykes, G. E., 1985, Effect of nutritional stress on the storage proteins of soybeans, Plant Physiol. 78:582–585.

    Article  PubMed  CAS  Google Scholar 

  • Gepts, P., 1988, Phaseolin as an evolutionary marker, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 215–241, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Gepts, P., 1990, Genetic diversity of seed storage proteins in plants, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds.), pp. 64–68, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Gepts, P., and Bliss, F. A., 1985, F1 hybrid weakness in the common bean: Differential geographic origin suggests two gene pools in cultivated bean germplasm, J. Hered. 76:447–450.

    Google Scholar 

  • Gepts, P., and Bliss, F. A., 1986, Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia, Econ. Bot. 40:469–478.

    Article  CAS  Google Scholar 

  • Gepts, P., and Bliss, F. A., 1988, Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa, Econ. Bot. 42:86–104.

    Article  Google Scholar 

  • Gepts, P., and Clegg, M. T., 1989, Genetic diversity in pearl millet (Pennisetum glaucum [L.] R.Br.) at the DNA sequence level, J. Hered. 80:203–208.

    CAS  Google Scholar 

  • Gepts, P., and Debouck, D. G., 1991, Origin, domestication, and evolution of the common bean, Phaseolus vulgaris, in: Common Beans: Research for Crop Improvement (O. Voysest and A. Van Schoonhoven, eds.), pp. 7–53, CAB, Wallingford, England.

    Google Scholar 

  • Gepts, P., Osborn, T. C., Rashka, K., and Bliss, F. A., 1986, Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): Evidence for multiple centers of domestication, Econ. Bot. 40:451–468.

    Article  CAS  Google Scholar 

  • Gepts, P., Kmiecik, K., Pereira, P., and Bliss, F. A., 1988, Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas, Econ. Bot. 42:73–85.

    Article  Google Scholar 

  • Ghaderi, A., Adams, M. W., and Saettler, A. W., 1982, Environmental response patterns in commercial classes of common bean (Phaseolus vulgaris L.), Theor. Appl. Genet. 63:17–22.

    Article  Google Scholar 

  • Glaszmann, J. C., 1987, Isozymes and classification of Asian rice varieties, Theor. Appl. Genet. 74:21–30.

    Article  CAS  Google Scholar 

  • Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Am. Nat. 123:681–709.

    Article  Google Scholar 

  • Graner, A., Siedler, H., Jahoor, A., Herrmann, R. G., and Wenzel, G., 1990, Assessment of the degree and the type of restriction fragment polymorphism in barley (Hordeum vulgare), Theor. Appl. Genet. 80:826–832.

    Article  Google Scholar 

  • Grant, V., 1975, Genetics of Flowering Plants, Columbia University Press, New York.

    Google Scholar 

  • Graur, D., Bogher, M., and Brieman, A., 1989, Restriction endonuclease profiles of mitochondrial DNA and the origin of the B genome of wheat, Triticum aestivum, Heredity 62:335–342.

    CAS  Google Scholar 

  • Guo, M., Lightfoot, D. A., Mok, M. C., and Mok, D. W. S., 1991, Analyses of Phaseolus vulgaris L. and P. coccineus Lam. hybrids by RFLP: Preferential transmission of P. vulgaris alleles, Theor. Appl. Genet. 81:703–709.

    Article  CAS  Google Scholar 

  • Halward, T. M., Stalker, H. T., Larue, E. A., and Kodiert, G., 1991, Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species, Genome 34:1013–1020.

    Article  CAS  Google Scholar 

  • Hammer, K., 1984, Das Domestikationssyndrom, Kulturpflanze 32:11–34.

    Article  Google Scholar 

  • Hamrick, J. L., and Godt, M. J. W., 1990, Allozyme diversity in plant species, in: Plant Population Genetics, Breeding, and Genetic Resources (A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, eds.), pp. 43–63, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Harlan, J. R., 1971, Agricultural origins: Centers and non-centers, Science 174:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J. R., 1975, Crops and Man, American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Harlan, J. R., and De Wet, J. M. J., 1972, A simple classification of cultivated sorghum, Crop Sci. 12:172–176.

    Article  Google Scholar 

  • Harlan, J. R., and De Wet, J. M. J., 1973, On the quality of evidence for origin and dispersal of cultivated plants, Curr. Anthropol. 14:51–62.

    Article  Google Scholar 

  • Havey, M. J., and Muehlbauer, F. J., 1989, Variability for restriction fragment lengths and phylogenies in lentil, Theor. Appl Genet. 77:839–843.

    Article  Google Scholar 

  • Heiser, C. B., 1965, Cultivated plants and cultural diffusion in nuclear America, Am. Anthropol. 67:930–949.

    Article  Google Scholar 

  • Heiser, C. B., 1988, Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–81.

    Article  Google Scholar 

  • Helentjaris, T., King, G., Slocum, M., Siedenstrang, C., and Wegman, S., 1985, Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding, Plant Mol. Biol. 5:109–118.

    Article  CAS  Google Scholar 

  • Hernandez Xolocotzi, E., Miranda Colin, S., and Prwyer, C., 1959, El origen de Phaseolus coccineus L. darwinianus Hernandez X. & Miranda C. subspecies nova, Rev. Soc. Mex. Hist. Nat. 20:99–121.

    Google Scholar 

  • Heun, M., Kennedy, A. E., Anderson, J. A., Lapitan, N. L. V., Sorrells, M. E., and Tanksley, S. D., 1991, Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgere), Genome 34:437–447.

    Article  Google Scholar 

  • Hillman, G. C., and Davies, M. S., 1990, Domestication rates in wild-type wheats and barley under primitive cultivation, Biol. J. Linn. Soc. 39:39–78.

    Article  Google Scholar 

  • Hilu, K., 1983, The role of single-gene mutation in the evolution of flowering plants, in: Evolutionary Biology, Vol. 16 (M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 97–128, Plenum Press, New York.

    Chapter  Google Scholar 

  • Hoffman, D. L., Soltis, D. E., Muehlbauer, F. J., and Ladizinsky, G., 1986, Isozyme polymorphism in Lens (Leguminosae), Syst. Bot. 11:392–402.

    Article  Google Scholar 

  • Hoffman, L. M., and Donaldson, D. D., 1985, Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome, EMBO J. 4:883–889.

    PubMed  CAS  Google Scholar 

  • Holwerda, B. C., Jana, S., and Crosby, W. L., 1986, Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum, Genetics 114:1271–1291.

    CAS  Google Scholar 

  • Hosaka, K., and Hanneman, R. E., 1988a, Origin of chloroplast DNA diversity in the Andean potatoes, Theor. Appl. Genet. 76:333–340.

    CAS  Google Scholar 

  • Hosaka, K., and Hanneman, R. E., 1988b, The origin of the cultivated tetraploid potato based on chloroplast DNA, Theor. Appl. Genet. 76:172–176.

    CAS  Google Scholar 

  • Hosaka, K., Kianian, S. F., McGrath, J. M., and Quiros, C. F., 1990, Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and n = 9 diploid species, Genome 33:131–142.

    Article  CAS  Google Scholar 

  • Hutchinson, J. B., 1951, Intra-specific differentiation in Gossypium hirsutum, Heredity 5:161–193.

    Google Scholar 

  • Iltis, H. H., 1983, From teosinte to maize: The catastrophic sexual transmutation, Science 222:886–894.

    Article  PubMed  CAS  Google Scholar 

  • Jaaska, V., 1980, Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny, Theor. Appl. Genet. 56:273–284.

    Article  CAS  Google Scholar 

  • Jaaska, V., 1981, Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: Intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group, Plant Syst. Evol. 137:259–273.

    Article  CAS  Google Scholar 

  • Jana, S., and Pietrzak, L., 1988, Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity, Genetics 119:981–990.

    PubMed  CAS  Google Scholar 

  • Jørgensen, R. B., 1986, Relationships in the barley genus (Hordeum): an electrophoretic examination of proteins. Hereditas 104:273–291.

    Article  Google Scholar 

  • Kahler, A. L., and Allard, R. W., 1981, Worldwide patterns of genetic variation among four esterase loci in barley (Hordeum vulgare L.), Theor. Appl. Genet. 59:101–111.

    Article  CAS  Google Scholar 

  • Kaplan, L., 1965, Archaeology and domestication in American Phaseolus, Econ. Bot. 19:358–368.

    Article  Google Scholar 

  • Keim, P., Shoemaker, R. C., and Palmer, R. G., 1989, Restriction fragment polymorphism diversity in soybean, Theor. Appl. Genet. 77:786–792.

    Article  Google Scholar 

  • Kesseli, R., Ochoa, O., and Michelmore, R. W., 1991, Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. saliva), Genome 34:430–436.

    Article  Google Scholar 

  • Khairallah, M. M., Adams, M. W., and Sears, B. B., 1990, Mitochondrial DNA polymorphisms of Malawian bean lines: Further evidence for two major gene pools, Theor. Appl. Genet. 80:753–761.

    Article  CAS  Google Scholar 

  • Kimura, M., 1983, The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Knight, R. L., 1948, The role of major genes in the evolution of economic characters, J. Genet. 48:370–387.

    Article  PubMed  CAS  Google Scholar 

  • Kochert, G., Halward, T., Branch, W. D., and Simpson, C. E., 1991, RFLP variability in peanut (Arachis hypogea L.) cultivars and wild species, Theor. Appl. Genet. 81:565–570.

    Article  CAS  Google Scholar 

  • Koenig, R., and Gepts, P., 1989a, Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris), J. Hered. 80:455–459.

    Google Scholar 

  • Koenig, R., and Gepts, P., 1989b, Allozyme diversity in wild Phaseolus vulgaris: Further evidence for two major centers of diversity, Theor. Appl. Genet. 78:809–817.

    Article  Google Scholar 

  • Koenig, R., Singh, S. P., and Gepts, P., 1990, Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae), Econ. Bot. 44:50–60.

    Article  Google Scholar 

  • Koinange, E. M. K., and Gepts, P., 1992, Hybrid weakness in wild Phaseolus vulgaris L., J. Hered. 83:135–139.

    Google Scholar 

  • Ladizinsky, G., 1985, Founder effect in cropplant evolution, Econ. Bot. 39:191–198.

    Article  Google Scholar 

  • Ladizinsky, G., Braun, D., Goshen, D., and Muehlbauer, F. J., 1984, The biological species of the genus Lens, Bot. Gaz. 145:253–261.

    Article  Google Scholar 

  • Lande, R., 1981, The minimum number of genes contributing to quantitative variation between and within populations, Genetics 99:541–553.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1983, The response to selection on major and minor mutations affecting a metrical trait, Heredity 50:47–65.

    Article  Google Scholar 

  • Landry, B. S., Kesseli, R., Leung, H., and Michelmore, R. W., 1987, Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment length polymorphisms in lettuce (Lactuca sativa L.), Theor. Appl. Genet. 74:646–653.

    Article  CAS  Google Scholar 

  • Lyman, J. M., Baudoin, J. P., and Hidalgo, R., 1985, Lima bean, in: Grain Legume Crops (R. H. Summerfield and E. H. Roberts, eds.), pp. 477–519, Collins, London.

    Google Scholar 

  • Lynch, T., Gonzalez, A., Tohme, J., and Garcia, J., 1992, Variation in characters related to leaf photosynthesis in wild bean populations, Crop Sci. 32:633–640.

    Article  CAS  Google Scholar 

  • Mackie, J., 1943, Origin, dispersal and variability of the lima bean, Phaseolus lunatus, Hilgardia 15:1–29.

    Google Scholar 

  • Mangelsdorf, P. C., 1974, Corn: Its Origin, Evolution and Improvement, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Marchais, L., and Pernes, J., 1985, Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). I. Male sterility, Z. Pflanzenzüchtg. 95:103–112.

    Google Scholar 

  • Marchais, L., and Tostain, S., 1985, Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). II. Characters of domestication, Z. Pflanzenzüchtg. 95:245–261.

    Google Scholar 

  • Marechal, R., Mascherpa, J.-M., and Stainier, F., 1978, Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique, Boissiera 28:1–273.

    Google Scholar 

  • McClean, P. E., and Hanson, M. R., 1986, Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species, Genetics 112:649–667.

    PubMed  CAS  Google Scholar 

  • McCouch, S. R., Kodiert, G., Yu, Z. Y., Khush, G. S., Coffman, W. R., and Tanksley, S. D., 1988, Molecular mapping of rice chromosomes, Theor. Appl. Genet. 76:815–829.

    Article  CAS  Google Scholar 

  • McLeod, M. J., Guttman, S. I., and Eshbaugh, W. H., 1982, Early evolution of chili peppers (Capsicum), Econ. Bot. 36:361–368.

    Article  Google Scholar 

  • McLeod, M. J., Guttman, S. I., Eshbaugh, W. H., and Rayle, R. E., 1983, An electrophoretic study of evolution in Capsicum (Solanaceae), Evolution 37:562–574.

    Article  CAS  Google Scholar 

  • Messmer, M. M., Melchinger, A. E., Lee, M., Woodman, W. L., Lee, E. A., and Lamkey, K. R., 1991, Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize population: Comparison of allozyme and RFLP data, Theor. Appl. Genet. 83:97–107.

    Article  Google Scholar 

  • Miller, J. C., and Tanksley, S. D., 1990, RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon, Theor. Appl. Genet. 80:437–448.

    CAS  Google Scholar 

  • Miranda Colín, S., 1979, Evolucióxn de Phaseolus vulgaris y P. coccineus. in: Contribuciones al Conocimiento del Frijol (Phaseolus) en México. (E. M. Engelman, ed.) pp. 83–99, Colegio de Postgraduados, Chapingo, México.

    Google Scholar 

  • Morden, C. W., Doebley, J. F., and Schertz, K. F., 1989, Allozyme variation in Old World races of Sorghum bicolor (Poaceae), Am. J. Bot. 76:247–255.

    Article  Google Scholar 

  • Moreno, J., and Chrispeels, M. J., 1989, A lectin gene encodes the α-amylase inhibitor of the common bean, Proc. Natl. Acad. Sci. USA 86:7885–7889.

    Article  PubMed  CAS  Google Scholar 

  • Motto, M., Soressi, G. P., and Salamini, F., 1978, Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.), Genetica 49:31–36.

    Article  Google Scholar 

  • Nabhan, G. P., 1985, Native crop diversity in Aridoamerica: Conservation of regional gene pools, Econ. Bot. 39:387–399.

    Article  Google Scholar 

  • Nakai, Y., 1981, D genome donors for Aegilops cylindrica (CCDD) and Triticum aestivum (AABBDD) deduced from esterase isozyme analysis. Theor. Appl. Genet. 60:11–16.

    Article  CAS  Google Scholar 

  • Neale, D. B., Saghai-Maroof, M. A., Allard, R. W., Zhang, Q., and Jorgensen, R. A., 1986, Chloroplast DNA diversity in populations of wild and cultivated barley, Genetics 120:1105–1110.

    Google Scholar 

  • Nevo, E., Zohary, D., Brown, A. H. D., and Haber, M., 1979, Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel, Evolution 33:815–833.

    Article  CAS  Google Scholar 

  • Nevo, E., Beiles, A., and Zohary, D., 1986, Genetic resources of wild barley in the Near East: Structure, evolution and application in breeding, Biol. J. Linn. Soc. 27:355–380.

    Article  Google Scholar 

  • Nienhuis, J., and Singh, S. P., 1988a, Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle American origin. II. Genetic variance, heritability, and expected response from selection, Plant Breed. 101:155–163.

    Article  Google Scholar 

  • Nienhuis, J., and Singh, S. P., 1988b, Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle-American origin. I. General combining ability, Plant Breed. 101:143–154.

    Article  Google Scholar 

  • Nodari, R. O., Koinange, E. M. K., Kelly, J. D., and Gepts, P., 1992, Towards an integrated linkage map of common bean. I. Development of genomic DNA probes and levels of restriction fragment length polymorphism, Theor. Appl. Genet. 84:186–192.

    Article  CAS  Google Scholar 

  • Ogihara, Y., and Tsunewaki, K., 1988, Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis, Theor. Appl. Genet. 76:321–332.

    Article  CAS  Google Scholar 

  • Oka, H. I., 1958, Intervarietal variation and classification of cultivated rice, Ind. J. Genet. Plant Breed. 18:79–89.

    Google Scholar 

  • Osborn, T. C., Blake, T., Gepts, P., and Bliss, F. A., 1986, Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris, Theor. Appl. Genet. 71:847–855.

    Article  CAS  Google Scholar 

  • Osborn, T. C., Alexander, D. C., Sun, S. S. M., Cardona, C., and Bliss, F. A., 1988, Insecticidal activity and lectin homology of arcelin seed protein, Science 240:207–210.

    Article  CAS  Google Scholar 

  • Pääbo, S., 1989, Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification, Proc. Natl. Acad. Sci. USA 86:1939–1943.

    Article  PubMed  Google Scholar 

  • Pääbo, S., Higuchi, R., and Wilson, A. C., 1989, Ancient DNA and the polymerase chain reaction, J. Biol. Chem. 264:9709–9712.

    PubMed  Google Scholar 

  • Palmer, J. D., 1987, Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation, Am. Nat. 130:S6–S29.

    Article  CAS  Google Scholar 

  • Palmer, J. D., 1990, Contrasting modes and tempos of genome evolution in land plant organelles, Trends Genet. 6:115–120.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., 1992, Mitochondrial DNA in plant systematics: Applications and limitations, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 36–49, Chapman Hall, New York.

    Chapter  Google Scholar 

  • Palmer, J. D., Shields, C. R., Cohen, D. B., and Orton, T. J., 1983, Chloroplast DNA evolution and the origin of amphidiploid Brassica species, Theor. Appl. Genet. 65:181–189.

    Article  CAS  Google Scholar 

  • Palmer, J. D., Jorgensen, R. A., and Thompson, W. F., 1985, Chloroplast DNA variation and evolution in Pisum: Patterns of change and phylogenetic analysis, Genetics 109:195–213.

    PubMed  CAS  Google Scholar 

  • Panella, L., and Gepts, P., 1992, Genetic relationships within Vigna unguiculata (L.) Walp. based on isozyme analyses, Genet. Res. Crop Evol. 39:71–88.

    Google Scholar 

  • Percy, R. G., and Wendel, J. F., 1990, Allozyme evidence for the origin and diversification of Gossypium barbadense L., Theor. Appl. Genet. 79:529–542.

    Article  Google Scholar 

  • Pernès, J., Combes, D., and Leblanc, J. M., 1984, Le mil, in: Gestion des ressources génétiques des plantes, Vol. 1 (J. Pernes, ed.), pp. 159–197, Lavoisier, Paris.

    Google Scholar 

  • Pickersgill, B., Heiser, C. B., and McNeill, J., 1979, Numerical taxonomy studies on variation and domestication in some species of Capsicum, in: The Biology and Taxonomy of the Solanaceae (J. G. Hawkes, R. N. Lester, and A. D. Skelding, eds.), pp. 679–700, Academic Press, New York.

    Google Scholar 

  • Pinkas, R., Zamir, D., and Ladizinsky, G., 1985, Allozyme divergence and evolution in the genus Lens, Plant Syst. Evol. 151:131–140.

    Article  Google Scholar 

  • Pratt, R. C., and Nabhan, G. P., 1988, Evolution and diversity of Phaseolus acutifolius genetic resources, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 409–440, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Rick, C. M., and Fobes, J. F., 1975, Allozyme variation in the cultivated tomato and closely related species, Bull. Torrey Bot. Club 102:376–384.

    Article  Google Scholar 

  • Rindos, D., 1984, The Origins of Agriculture, Academic Press, Orlando, Florida.

    Google Scholar 

  • Robert, T., Lespinasse, R., Pernes, J., and Sarr, A., 1991, Gametophytic competition as influencing gene flow between wild and cultivated forms of pearl millet (Pennisetum typhoides), Genome 34:195–200.

    Article  Google Scholar 

  • Rogstad, S. H., Patton II, J. C., and Schaal, B. A., 1988, M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms, Proc. Natl. Acad. Sci. USA 85:9176–9178.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Andreas, J., Yandell, B. S., and Bliss, F. A., 1986, Bean arcelin. 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition, Theor. Appl. Genet. 72:123–128.

    Article  Google Scholar 

  • Rüdorf, W., 1959, Genetics of Phaseolus aborigineus, in: Proceedings Xth International Genetics Congress, Vol. 2, p. 243 (Abstract).

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W., 1984, Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics, Proc. Natl. Acad. Sci. USA 81:8014–8018.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, P., and Stebbins, G. L., 1956, Morphological evidence concerning the origin of the B genome in wheat, Am. J. Bot. 43:297–304.

    Article  Google Scholar 

  • Schinkel, C., and Gepts, P., 1988, Phaseolin diversity in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed. 101:292–301.

    Article  Google Scholar 

  • Schinkel, C., and Gepts, P., 1989, Allozyme variability in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed. 102:182–195.

    Article  CAS  Google Scholar 

  • Schmit, V., and Debouck, D. G., 1991, Observations on the origin of Phaseolus polyanthus Greenman, Econ. Bot. 45:345–364.

    Article  Google Scholar 

  • Second, G., 1982, Origin of the genetic diversity of cultivated rice (Oryza spp.): Study of the polymorphism scored at 40 enzyme loci, Jpn. J. Genet. 57:25–57.

    Article  Google Scholar 

  • Shii, C. T., Mok, M. C., Temple, S. R., and Mok, D. W. S., 1980, Expression of developmental abnormalities in hybrids of Phaseolus vulgaris L., J. Hered. 71:218–222.

    Google Scholar 

  • Silbernagel, M. J., and Hannan, R. M., 1988, Utilization of genetic resources in the development of commercial bean cultivars in the U.S.A., in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 561–596, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Singh, S. P., 1991, Bean genetics, in: Common Beans: Research for Crop Improvement (A. Van Schoonhoven and O. Voysest, eds.), pp. 199–286, CAB, Wallingford, England.

    Google Scholar 

  • Singh, S. P., and Gutiérrez, A. J., 1984, Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding, Euphytica 33:337–345.

    Article  Google Scholar 

  • Singh, S. P., Cajiao, C., Gutiérrez, J. A., Garcia, J., Pastor-Corrales, M. A., and Morales, F. J., 1989, Selection for seed yield in inter-gene pool crosses of common bean, Crop Sci. 29:1126–1131.

    Article  Google Scholar 

  • Singh, S. P., Gepts, P., and Debouck, D. G., 1991, Races of common bean (Phaseolus vulgaris L., Fabaceae). Econ. Bot. 45:379–396.

    Article  Google Scholar 

  • Singh, S. P., Nodari, R., and Gepts, P., 1991a, Genetic diversity in cultivated common bean. I. Allozymes, Crop Sci. 31:19–23.

    Article  CAS  Google Scholar 

  • Singh, S. P., Gutiérrez, J. A., Molina, A., Urrea, C., and Gepts, P., 1991b, Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits, Crop Sci. 31:23–29.

    Article  CAS  Google Scholar 

  • Singh, S. P., Teran, J., Molina, A., and Gutiérrez, J. A., 1991c, Combining ability for seed yield and its components in common bean of Andean origin, Crop Sci. 32:81–84.

    Article  Google Scholar 

  • Smartt, J., 1988, Morphological, physiological, and biochemical changes in Phaseolus beans under domestication, in: Genetic Resources of Phaseolus Beans (P. Gepts, ed.), pp. 143–161, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Sokal, R. R., 1991, The continental population structure of Europe, Annu. Rev. Anthropol. 20:119–140.

    Article  Google Scholar 

  • Sokal, R. R., Oden, N. L., and Wilson, C., 1991, Genetic evidence for the spread of agriculture in Europe by demie diffusion, Nature 351:143–145.

    Article  PubMed  CAS  Google Scholar 

  • Soltis, D. E., Soltis, P. S., and Milligan, B. G., 1992a, Intraspecific chloroplast DNA variation: Systematic and phylogenetic implications, in: Molecular Systematic of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 117–150, Chapman Hall, New York.

    Chapter  Google Scholar 

  • Soltis, P. S., Doyle, J. J., and Soltis, D. E., 1992b, Molecular data and polyploid evolution in plants, in: Molecular Systematics of Plants (P. S. Soltis, D. E. Soltis, and J. J. Doyle, eds.), pp. 177–201, Chapman Hall, New York.

    Chapter  Google Scholar 

  • Song, K. M., Osborn, T. C., and Williams, P. H., 1988a, Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species, Theor. Appl. Genet. 75:784–794.

    Article  CAS  Google Scholar 

  • Song, K. M., Osborn, T. C., and Williams, P. H., 1988b, Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and (B. oleracea), Theor. Appl. Genet. 76:593–600.

    Article  CAS  Google Scholar 

  • Song, K., Osborn, T. C., and Williams, P. H., 1990, Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. Oleracea and B. rapa (syn. campestris). Theor. Appl. Genet. 79:497–506.

    Article  Google Scholar 

  • Stockton, T., Sonnante, G., and Gepts, P., 1992, Detection of minisatellite sequences in Phaseolus vulgaris, Plant Mol. Biol. Rep. 10:47–59.

    Article  CAS  Google Scholar 

  • U, N., 1935, Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization, Jpn. J. Bot. 7:389–452.

    Google Scholar 

  • Vaillancourt, R. E., and Weeden, N. F., 1992, Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata, Leguminosae, Am. J. Bot. 79:1194–1199.

    Article  CAS  Google Scholar 

  • Vaillancourt, R. E., Weeden, N. F., and Barnard, J., 1993, Isozyme diversity in the cowpea species complex (Vigna unguiculata), Crop Sci. in press.

    Google Scholar 

  • Van Schoonhoven, A., and Cardona, C., 1982, Low levels of resistance to the Mexican bean weevil in dry beans, J. Econ. Entomol. 75:567–569.

    Google Scholar 

  • Wang, Z. Y., Second, G., and Tanksley, S. D., 1992, Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs, Theor. Appl. Genet. 83:565–581.

    Article  Google Scholar 

  • Warwick, S. I., and Aiken, S. G., 1986, Electrophoretic evidence for the recognition of two species in annual wild rice (Zizania, Poaceae). Syst. Bot. 11:464–473.

    Article  Google Scholar 

  • Webster, B. D., Lynch, S. P., and Tucker, C. L., 1979, A morphological study of the development of reproductive structures of Phaseolus lunatus L., J. Am. Soc. Hortic. Sci. 104:240–243.

    Google Scholar 

  • Webster, B. D., Ross, R. M., and Sigourney, M. C., 1980, A morphological study of the development of reproductive structures of Phaseolus coccineus,J. Am. Soc. Hortic. Sci. 105:825–833.

    Google Scholar 

  • Weeden, N. F., and Wendel, J. F., 1989, Genetics of plant isozymes, in: Isozymes in Plant Biology (D. E. Soltis and P. S. Soltis, eds.), pp. 46–72, Dioscorides, Portland, Oregon.

    Chapter  Google Scholar 

  • Wellhausen, E. J., Roberts, L. M., and Hernandez X., E., 1952, Races of Maize in Mexico, Bussey Institute, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Wells, W. C., Isom, W. H., and Waines, J. G., 1988, Outcrossing rates of six common bean lines, Crop Sci. 28:177–178.

    Article  Google Scholar 

  • Wendel, J. F., 1989, New World tetraploid cottons contain Old World cytoplasm, Proc. Natl. Acad. Sci. USA 86:4132–4236.

    Article  PubMed  CAS  Google Scholar 

  • Wendel, J. F., and Weeden, N. F., 1989, Visualization and interpretation of plant isozymes, in: Isozymes in Plant Biology (D. E. Soltis and P. S. Soltis, eds.), pp. 5–45, Dioscorides, Portland, Oregon.

    Chapter  Google Scholar 

  • Wendel, J. F., Olson, P. D., and Stewart, J. McD., 1989, Genetic diversity, introgression, and independent domestication of Old World cultivated cottons, Am. J. Bot. 76:1795–1806.

    Article  Google Scholar 

  • Wendel, J. F., Brubaker, C. L., and Percival, A. E., 1992, Genetic diversity in Gossypium hirsutum and the origin of Upland cotton, Am. J. Bot. 79:1291–1310.

    Article  Google Scholar 

  • White, J. W., Montes, C., and Mendoza, L. Y., 1992, Use of grafting to characterize and alleviate hybrid dwarfness in common bean, Euphytica 59:19–25.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18:6531–6535.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, K. H., Li, W.-H., and Sharp, P. M., 1987, Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs, Proc. Natl. Acad. Sci. USA 84:9054–9058.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q., Saghai Maroof, M. A., Lu, T. Y., and Shen, B. Z., 1992, Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis, Theor. Appl. Genet. 83:495–499.

    Google Scholar 

  • Zimmer, E. A., Jupe, E. R., and Walbot, V., 1988, Ribosomal gene structure, variation, and inheritance in maize and its ancestors, Genetics 120:1125–1136.

    PubMed  CAS  Google Scholar 

  • Zurawski, G., and Clegg, M. T., 1987, Evolution of higher plant chloroplast DNA-encoded genes: Implications for structure-function and phylogenetic studies, Annu. Rev. Plant Physiol. 38:391–418.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gepts, P. (1993). The Use of Molecular and Biochemical Markers in Crop Evolution Studies. In: Hecht, M.K., MacIntyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2878-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2878-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6248-7

  • Online ISBN: 978-1-4615-2878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics