Skip to main content

Treatment of Poor Prognosis AML Patients Using PSC833 (Valspodar) Plus Mitoxantrone, Etoposide, and Cytarabine (PSC-MEC)

  • Chapter
Drug Resistance in Leukemia and Lymphoma III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 457))

Abstract

The failure of convenional chemotherapy in relapsed or refractory and other poor risk AML patients has been linked to expression of the multidrug resistance gene (mdr1) product P-glycoprotein (P-gp). PSC 833 is a non-competitive inhibitor of P-gp and has been shown in vitro and in vivo to restore sensitivity of resistant tumor cells to anticancer drugs (ACDs). Induction chemotherapy consisting of cytarabine (C) in combination with PSC 833 and escalating doses of mitoxantrone (M) and etoposide (E) over 5 or 6 days were tested in two phase I/II studies in poor prognosis AML. Overall, 59 patients were evaluated: their age ranged between 18 and 70 years. Fourteen patients had primary refractory disease, 25 had relapsed within 9 months from first complete remission (CR), 5 were in second relapse, 10 had secondary AML, and 4 had relapsed post-bone marrow transplantation. PSC 833 was given as a constant i.V. infusion at a rate of 10 mg/kg/24h for 5 or 6 days, depending on the duration of chemotherapy. In both studies a loading dose of 2 mg/kg of PSC 833 was given on day 1. In the 5-day regimen, the final study doses of the cytotoxic agents were C 1 g/m2/d, M 4.0 mg/m2/d, and E 40 mg/m2/d. In the 6-day regimen, the final study doses of the cytotoxic agents were C 1 g/m2/d, M 4.5 mg/m2/d and E 30 mg/m2/d. The combined efficacy results of both studies indicate that PSC-MEC is active in all treatment indications, complete remission being achieved in 2/5 (40%) second relapses, 8/25 (32%) early relapses, 3/10 (30%) secondary AML, 3/15 (20%) refractory patients and 1/4 (25%) post-BMT relapses. Based on historical controls, this observed overall CR rate (29%) is higher than expected in this high risk patient population. Our data indicate that, in refractory/relapsed AML patients, PSC-MEC regimens had encouraging antileukemic effects, is well tolerated, and has led to Phase III trials in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rai, KR, Holland JF, Glidwell OJ, et al: Treatment of acute myeloid leukemia: A study by Cancer and Leukemia Group B. Blood 58:1203–1212, 1981.

    PubMed  CAS  Google Scholar 

  2. Yates J, Glidwell O, Wiernik P, et al: Cytosine arabinoside with daunorubicin or adraimycin for therapy of acute myeloid leukemia: a CALGB study. Blood 60:453–462, 1982.

    Google Scholar 

  3. Omura GA, Vogler WR, Lefabte J, et al: Treatment of acute myelogenous leukemia: Influence of three induction regimens and maintenance with chemotherapy or BCG immunotherapy. Cancer 49:1530–1536, 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Sauter C, Berchtold W, Foopp M, et al: Acute myelogenous leukemia: Maintenance chemotherapy after early consolidation treatment does not prolong survival. Lancet 1:379–382, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Vogler WR, Winton EE, Gordon DS, et al: A randomized comparison of post remission therapy in acute myelogenous leukemia: A Southwestern Cancer Study Group trial. Blood 63:1039–1045, 1984.

    PubMed  CAS  Google Scholar 

  6. Priesler H, David RB, Kirshner J, et al: Comparison of 3 remission induction regimens and two post-induction regimens for the treatment of acute non-lymphocytic leukemia. Blood 69:1441–1448, 1987.

    Google Scholar 

  7. Bishop JF, Lowenthal RM, Joshua D, et al: Etoposide in acute non-lymphocytic leukemia. Blood 75:1–6, 1990.

    Google Scholar 

  8. Mayer RJ, Davis RB, Schiffer CA, et al: Intensive post-remission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 3331:896–903, 1994.

    Article  Google Scholar 

  9. Stone and Mayer:. Hematol Clin North Am, 7:47, 1993.

    Google Scholar 

  10. Keating MJ, Estey E, Katarjian H: Acute Leukemia. In: DeVita VT Jr, Hellman S, and Rosemberg SA eds. Cancer: Principles & Practice of Oncology. JB Lippincott, Philadelphia, 1993, p. 1938–1964.

    Google Scholar 

  11. Bishop JS, Matthews JP, Young GA, et al: A randomized trial of high-dose cytarabine in induction in acute myeloid leukemia. Blood 87:1710, 1996.

    PubMed  CAS  Google Scholar 

  12. Weick JK, Kopecky TJ, Appelbaum FR, et al: A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: A Southwest Oncology Group study. Blood 88:2841, 1996.

    PubMed  CAS  Google Scholar 

  13. McCalley DL. Treatment of adult acute leukaemia. Clinical Pharmacy 1992; 11:767–796.

    Google Scholar 

  14. Estey E, Plunkett W, Keating M et al. Variables predicting response to high dose cytosine arabinoside therapy in patients with refractory acute leukaemia. Leukaemia 1987; 1(8):580–583.

    CAS  Google Scholar 

  15. Willemze R, Ribbe WE, Zwaan FE. Experience with intermediate and high dose cytosine arabinoside in relapsed and refractory acute leukaemia. Neth J Med 1983; 26:215–219.

    PubMed  CAS  Google Scholar 

  16. Hiddemann W, Aul C, Maschmeyer G et al. High-dose versus intermediate dose cytosine arabinoside combined with mitoxantrone for treatment of relapsed and refractory acute myeloid leukaemia: results of an age adjusted randomized comparison. Leukaemia and Lymphoma; 10 Suppl:133–137.

    Google Scholar 

  17. Herzig RH, Wolff SN, Lazarus HM et al. High dose cytosine arabinoside therapy for refractory leukaemia. Blood 1983; 62:361–369.

    PubMed  CAS  Google Scholar 

  18. Hiddemann W, Büchner T. Treatment strategies in acute myeloid leukaemia (AML). Blut 1990; 60:163–171.

    Article  PubMed  CAS  Google Scholar 

  19. Keating MJ, Kantarjian H, Smith TL et al. Response to induction therapy and survival after relapse in acute myelogenous leukaemia. J Clin Oncol 1989; 7:1071–1080.

    PubMed  CAS  Google Scholar 

  20. Rees JKH, Swirsky D, Gray RG, et al: Principal results of the Medical Research Council’s 8th acute myeloid leukemia trial. Lancet 2:1236, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Keating MJ, Kantarjian H, Smith TL, et al: Response to salvage therapy and survival after relapse in acute myelogenous leukemia. J Clin Oncol 7:1071, 1989.

    PubMed  CAS  Google Scholar 

  22. Hiddemann W, Martin WR, Sauerland CM, et al: Definition of refractoriness against conventional chemotherapy in acute myeloid leukemia: a proposal based on the results of retreatment by thioguanine, cytosine arabinoside, and daunorubicin (TAB 9) in 150 patients with relapse after standardized first line therapy. Leukemia 4:184, 1990.

    PubMed  CAS  Google Scholar 

  23. Estey E, Thall P, and David C: Design and analysis of salvage therapy in acute myelogenous leukemia. Cancer Chemother Pharmacol 40(Suppl):S9–S12, 1997.

    Article  PubMed  Google Scholar 

  24. Bolwell BJ, Cassileth PA, Gale RP: High dose cytarabine:a review. Leukemia 2:253, 1998.

    Google Scholar 

  25. Fojo AT, Whang-Peng J, Gottesmann MM. Amplification of DNA sequences in human multidrug-resistance KB carcinoma cells. Proc Natl Acad Sci USA 82:7661–7665, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Gros P, Neriah BY, Croop JM, et al. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 323:728–731, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Goldstein LJ, Galski H, Fojo A, et al. Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 2:116–124, 1989.

    Article  Google Scholar 

  28. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem Biophys Acta 455:152–162, 1976

    Article  PubMed  CAS  Google Scholar 

  29. Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 2211285–2211288, 1983.

    Google Scholar 

  30. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann Rev Biochem 62:385–427, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese Hamster cells in vitro: cross-resistance, radioautographic and cytogenetic studies. Cancer Res 30:1174–1184, 1970.

    PubMed  CAS  Google Scholar 

  32. Pastan P, Schouten H. Multidrug resistance mediated by P-glycoprotein in haematological malignancies. Neth J Med 42:218–231, 1993.

    Google Scholar 

  33. Licht T, Pastan I, Gottesman M, et al. P-glycoprotein mediated multidrug resistance in normal and neoplastic haemopoietic cells. Annals Hematol 69:159–171, 1994.

    Article  CAS  Google Scholar 

  34. Nooter K, Sonneveld P. Clinical relevance of P-glycoprotein expression in haematological malignancies. Leuk Res 18:23–243, 1994.

    Article  Google Scholar 

  35. Marie JP. P-glycoprotein in adult hematological malignancies. Hematol Oncol Clin N Am 9:239–250, 1995.

    CAS  Google Scholar 

  36. Zhou D, Marie JP, Suberville A, Zittoun R. Relevance of MDR-1 gene expression in acute myeloid leukemia and comparison of different diagnostic methods. Leukemia 6:879–885, 1992.

    PubMed  CAS  Google Scholar 

  37. List AF, Spier CM, Cline A et al. Expression of the multidrug resistance gene product (P-glycoprotein) in myelodysplasia is associated with a stem cell phenotype. Br J Haematol 1991; 78:28–34.

    Article  PubMed  CAS  Google Scholar 

  38. Nuessler V, Pelka-Fleischer R, Zweirzina H et al. P-glycoprotein expression in patients with acute leukaemia —clinical relevance Leukemia 10:523–531 1996.

    Google Scholar 

  39. Holmes J, West R. The effect of MDR1 gene expression on outcome in acute myeloid leukaemia. Brj Cancer 69:382–384, 1994.

    Article  CAS  Google Scholar 

  40. Te Boekhorst P, de Leeuww K, Schoester M, et al. Predominance of functional multidrug resistance (MDR-1) phenotype in CD34+ myeloid leukemia cells. Blood 79:3157–3162, 1993.

    Google Scholar 

  41. Campos L, Guyotat D, Archimbaud E, et al. Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79:473–476, 1992.

    PubMed  CAS  Google Scholar 

  42. Lamy T, Goasguen D, Mordeletb E, et al. P-glycoprotein (P-170) and CD34 expression in adult acute leukemia (AML). Leukemia 8:1879–1883, 1994.

    PubMed  CAS  Google Scholar 

  43. Wood P, Burgess R, McGregor A, Liu Yin J. P-glycoprotein expression on acute myeloid leukaemia blasts cells at diagnosis predicts response to chemotherapy and survival. Br J Haematol 87:509–514, 1994.

    Article  PubMed  CAS  Google Scholar 

  44. Kuwazuru Y, Yoshimura A, Hanada S, et al. Expression of the multidrug transporter P-glycoprotein in acute leukemia cells and correlation to clinical drug resistance. Cancer 66:868–873, 1990

    Article  PubMed  CAS  Google Scholar 

  45. Marie JP, Zittoun R, Sikic B. Multidrug resistance gene (mdr) expression in adult acute leukemias: correlation with treatment outcome and in vitro drug sensitivity. Blood 78:586–592, 1991.

    PubMed  CAS  Google Scholar 

  46. Pirker R, Wallner J, Geissler K, et al. MDR-1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst 83:708–712, 1991.

    Article  PubMed  CAS  Google Scholar 

  47. Michieli MM, Damiani D, Geromin A, et al. Overexpression of multidrug resistance-associated p-170 glycoprotein in acute non-lymphocytic leukemia. Eur J Haematol 48:87–92, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Tirikainen M, Elonen E, Ruutu T, Jansson S, Krusius T. Clinical significance of P-glycoprotein expression in acute leukemia as analysed by immunocytochemistry. Eur J Haematol 50:279–285, 1993.

    Article  Google Scholar 

  49. Zoechbauerm S, Gsur A, Brunner R, Kyrle P, Lechner K, Pirker R. P-glycoprotein expression as unfavorable prognostic factor in acute myeloid leukemia. Leukemia 8:975–977, 1994.

    Google Scholar 

  50. Basara N, Radosevic-Radojkovic N, Colovic M, Boskovic D, Rolovic Z. In vitro drug sensitivity of leukemic progenitors and P-glycoprotein expression in adult myeloid leukemia: correlation with induction treatment outcome. Eur J Haematol 55:83–87, 1995.

    Article  PubMed  CAS  Google Scholar 

  51. Zhou D, Zittoun R, Marie JP. Expression of multidrug resistance-associated protein (MRP) and multidrug resistance (MDR1) genes in acute myeloid leukemia. Leukemia 9:1661–1666, 1995.

    PubMed  CAS  Google Scholar 

  52. Lum BI, Fisher GA, Brophy NA, et al. Clinical trials of modulation of multidrug resistance. Pharmacokinetic and pharmacodynamic considerations. Cancer 72:3502–3514, 1993.

    Article  PubMed  CAS  Google Scholar 

  53. Ford J and Hait W. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42:156–199, 1993.

    Google Scholar 

  54. Fisher GA, Lum BL, Hausdorff J, et al. Pharmacological considerations in the modulation of multidrug resistance. Eur J Cancer 32A: 1082–1088, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Solary E, Witz B, Caillot D, et al. Combination of quinine as a potential reversing agent with mitoxantrone and cytarabine for the treatment of acute leukemias: a randomized multicenter study. Blood 88:1198–1205, 1996.

    PubMed  CAS  Google Scholar 

  56. Sonneveld P, Nooter K. Reversal of drug-resistance by cyclosporin-A in a patient with acute myelocytic leukaemia. Brit J Haem 1990; 75:208–211.

    Article  CAS  Google Scholar 

  57. List AF, Spier C, Greer J, et al. Phase I/II trial of cyclosporin as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol 1993;11:1652–1660.

    PubMed  CAS  Google Scholar 

  58. Fisher GA and Sikic BI. Clinical studies with modulators of multidrug resistance. Hematol Oncol Clin North AM 9:363–382, 1995.

    PubMed  CAS  Google Scholar 

  59. Yahanda AM, Adler KM, Fisher GA, et al. Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 10:1624–1634, 1992.

    PubMed  CAS  Google Scholar 

  60. Twentyman PR. Modification of cytotoxic drug resistance by non-immunosuppressive cyclosporins. Br J Cancer 57:254–258, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. Boesch D, Muller K, Poutier-Manzanedo A, Loor F. Restoration of daunomycin retention in multidrug resistant P388 cells by submicromolar concentrations of SDZ PSC 833. Exp Cell Res 196:26–32, 1991.

    Article  PubMed  CAS  Google Scholar 

  62. Twentyman PR and Bleehen NM. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur J Cancer 27:1639–1542, 1991.

    Article  PubMed  CAS  Google Scholar 

  63. Archinal Mattheis A, Rzepka RW, Wtanabe T, et al. Analysis of the interactions of SDZ PSC 833 ([3’keto-BMT1]-Val2]cyclosporine), a multidrug resistance modulator, with P-glycoprotein. Oncol Res 7:603–610, 1995.

    Google Scholar 

  64. Foxwell BM, Mackie A, Ling V, et al. Identification of the mutlidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol Pharmacol 36:534–546, 1989.

    Google Scholar 

  65. Twentyman PR. Cyclosporins as drug resistance modifiers. Bochem Pharmacol 43:109–117, 1992.

    Article  CAS  Google Scholar 

  66. Sonneveld P, Marie JP, Huisman C, et al. Reversal of multidrug resistance by PSC 833 combined with VAD in refractory multiple myeloma: a phase I study. Leukemia 10:1741–1750, 1996.

    PubMed  CAS  Google Scholar 

  67. Boote DJ, Dennis IF, Twentyman PR, et al. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol 14:610–618, 1996.

    PubMed  CAS  Google Scholar 

  68. Sonneveld P, Lowenberg B, Vossebled P, et al. Dose finding study of PSC 833, a novel MDR reversing agent, with daunorubicin and Ara-C in unteated eldelry patients with acute myelod leukemia (AML). Blood 90(Suppl 1) Abstract 2517, 1997.

    Google Scholar 

  69. Visani G, Milligan D, Leoni F, et al. A phase I dose-finding study of PSC 833, a novel MDR reversing agent, with mitoxantrone, etoposide and cytarabine (PSC-MEC) in poor prognosis acute leukemia (AML). Blood 90(Suppl 1) Abstract 2518, 1997.

    Google Scholar 

  70. Advani R, Saba H, Tallman M, et al. Treatment of poor prognosis AML patients with PSC 833 plus mitoxantrone, etoposide and cytarabine (PSC-MEC). Blood 90(Suppl 1) Abstract 2260, 1997.

    Google Scholar 

  71. Sikic b. Pharmacologic approaches to reversing multidrug resistance. Seminars in Hematol 34(Suppl 5):40–47, 1997.

    CAS  Google Scholar 

  72. Ho AD, Lipp T, Ehninger G et al. Combination of mitoxantrone and etoposide in refractory acute myelogenous leukaemia — an active and well-tolerated regimen. J Clin Oncol. 1988; 6:213–217.

    PubMed  CAS  Google Scholar 

  73. Spadea A, Petti MC, Fazi P et al. Mitoxantrone, etoposide and intermediate-dose cytarabine (MEC): an effective regimen for poor risk acute myeloid leukaemia. Leukaemia 1993; 7(No. 4):549–552.

    CAS  Google Scholar 

  74. Archimbaud E, Thomas X, Leblond V, et al. Timed sequential chemotherapy for previously treated acute myeloid leukaemia:long-term follow-up of etoposide, mitoxantrone, and cytarabine — 86 trial. J Clin Oncol 1995; 13:11–18.

    PubMed  CAS  Google Scholar 

  75. Cole SP. Bhradwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654, 1992.

    Article  PubMed  CAS  Google Scholar 

  76. Muller M, Meijer C, Zaman GJ, et al. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc Natl Acad Sci USA91:13033–13037, 1994.

    Article  Google Scholar 

  77. Eijdems EW, Zaman GJ, de Haas M, et al. Altered MRP is associted with multidrug resistance and reduced drug accumulation in human SW-1573 cells. Br J Cancer 72:298–306, 1995.

    Article  PubMed  CAS  Google Scholar 

  78. Scheffer GL. Wijngaard PL, Flens MJ, et al. The drug resistance-related protein LRP is the human major vault protein. Nat Med 1:578–582, 1995

    Article  PubMed  CAS  Google Scholar 

  79. List AF, Spier CS, Grogan TM, et al. Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 87:2464–2469, 1996

    PubMed  CAS  Google Scholar 

  80. Ross DD, Doyle LA, Schiffer CA, et al. Expression of multidrug resistance-associated protein (MRP) mRNA in blast cells from acute myeloid leukemia (AML) patients. Leukemia 10:48–55, 1996.

    PubMed  CAS  Google Scholar 

  81. Schenider E, cowan KH, Bader H, et al. Increased expression of the multidrug resistance-associated protein gene in relapsed leukemia. Blood 85:186–190, 1995.

    Google Scholar 

  82. Harousseau JL, Reiffers J, Hurteloup P et al. Treatment of relapsed acute myeloid leukaemia with idarubicin and intermediate-dose cytarabine. J Clin Oncol 1989; 7(1):45–49.

    PubMed  CAS  Google Scholar 

  83. List A, Karanes C, Dorr R, et al. Modulation of anthracycline resistance in poor-risk acute myeloid leukemia (AML) with SDZ PSC 833: results of a phase I/II multicenter study. Blood 88(Suppl 1) Abstract 1156, 1996.

    Google Scholar 

  84. Kornblau SM, Estey E, Madden T, et al. Phase I study of mitoxantrone plus etoposide with multidrug resistance blockade by SDZ PSC 833 in relapsed or refractory acute myelogenous leukemia. J Clin Oncol 15:1796–1802, 1997

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Advani, R. et al. (1999). Treatment of Poor Prognosis AML Patients Using PSC833 (Valspodar) Plus Mitoxantrone, Etoposide, and Cytarabine (PSC-MEC). In: Kaspers, G.J.L., Pieters, R., Veerman, A.J.P. (eds) Drug Resistance in Leukemia and Lymphoma III. Advances in Experimental Medicine and Biology, vol 457. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4811-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4811-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7180-9

  • Online ISBN: 978-1-4615-4811-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics