Skip to main content

Morphological Basis for Fluid Transport Through and Around Ependymal, Arachnoidal, and Glial Cells

  • Chapter
Intracranial Cyst Lesions

Part of the book series: Principles of Pediatric Neurosurgery ((PRINCPEDIATR))

Abstract

Cerebrospinal fluid in man is produced by the choroid plexus in the ventricular system at the rate of 500 ml a day; the total cerebrospinal fluid (CSF) is some 150 ml.1 Approximately 20% of the CSF is in the ventricles, but the majority is in the subarachnoid space over the surface of the brain and the spinal cord. There is also interstitial fluid within the extracellular spaces of the gray and white matter of the brain and spinal cord. Such extracellular fluid may be greatly increased in amount when there is cytotoxic and vasogenic cerebral edema associated with trauma, infection, or infarction of the brain or around a tumor.1–3 Extracellular fluid may also be increased in the periventricular white matter in acute hydrocephalus due to the insudation of CSF from the ventricles.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davson H, Welch K, Segal MB: Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh; 1987.

    Google Scholar 

  2. Reulen H-J, Huber P, Ito U, et al.: Peritumoral brain edema. In: Long D (ed.). Advances in Neurology, Vol. 52. Raven Press, New York; 1990; 307–315.

    Google Scholar 

  3. Weller RO: Developmental, neonatal and paediatric neuropathology. In: Weller RO (ed.). Systemic Pathology: Nervous System, Muscle and Eyes, Third ed., Vol. 4. Churchill Livingstone, Edinburgh; 1990; 309–359.

    Google Scholar 

  4. Weller RO, Wisniewski H: Histological and ultrastructural changes in experimental hydrocephalus. I: adult rabbit. Brain 92:819–828, 1969.

    Article  PubMed  CAS  Google Scholar 

  5. Mortensen OA, Sullivan WE: The cerebro-spinal fluid and the cervical lymph nodes. Anat Rec 56:359–363, 1933.

    Article  Google Scholar 

  6. Erlich SS, McComb JG, Hyman MS, Weiss MH: Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. J Neurosurg 70:926–931, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Bradbury MWB, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:329–336, 1981.

    Google Scholar 

  8. Cserr HF, Cooper DN, Suri PK, Patlak CS: Efflux of radiolabelled polyethylene glycols and albumin from rat brain. Am J Physiol 240:319–328, 1981.

    Google Scholar 

  9. Cserr HF, Ostrach LH: Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45:50–60, 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83:233–239, 1992. (submitted).

    Article  PubMed  CAS  Google Scholar 

  11. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of the rat brain. Am J Physiol 246:835–844, 1984.

    Google Scholar 

  12. Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Alcolado R, Weiler RO, Parrish EP, Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang ET, Inman CBE, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123, 1990.

    PubMed  CAS  Google Scholar 

  15. Kaplan GP, Hartman BK, Creveling CR: Localization of catechol-O-methyltransferase in the leptomeninges, choroid plexus and ciliary epithelium: implication for the separation of central and peripheral catechols. Brain Res 204:353–360, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Feuer D, Weller RO: Barrier functions of the leptomeninges: a study of normal meninges and meningiomas in tissue culture. Neuropathol Appl Neurobiol 17:391–405, 1991.

    Article  Google Scholar 

  17. Nicholas DS, Weller RO: The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Wislocki GB, Putnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29:313–320, 1921.

    Article  Google Scholar 

  19. Reulen HJ, Tsuyumu M, Tack A, et al.: Clearance of edema fluid into the cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg 48:754–764, 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Weiler RO, Shulman K: Infantile hydrocephalus: clinical, histological and ultrastructural study of brain damage. J Neurosurg 36:255–265, 1972.

    Article  Google Scholar 

  21. Weiler RO, Wisniewski H, Shulman K, Terry RD: Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30:613–627, 1971.

    Article  Google Scholar 

  22. Erlich SS, McComb JG, Hyman S, Weiss MH: Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64:466–473, 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Yamazumi H: Infiltration of Indian ink from subarachnoid space to nasal mucosa along olfactory nerves in rabbits. J Otolaryngol Jpn 92:608–616, 1989.

    CAS  Google Scholar 

  24. Harling-Berg C, Knopf PM, Merriam J, Cserr HF: Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J Neuroimmunol 25:185–193, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Hochwald GM, Wald A, Malhan C: The sink action or cerebrospinal fluid volume flow. Effect on brain water content. Arch Neurol 33:339–344, 1976.

    Article  PubMed  CAS  Google Scholar 

  26. Key A, Retzius G: Studien in der Anatomie des Nerven Systems und des Bindegewebes Stockholm 1876.

    Google Scholar 

  27. Weed LH: The absorption of cerebrospinal fluid into the venous system. Am J Anat 31:191–221, 1923.

    Article  CAS  Google Scholar 

  28. Kida S, Yamashima T, Kubota T, et al.: A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Upton ML, Weller RO: The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63: 867–875, 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Clark WE Le Gros: On the pacchionian bodies. J Anat 55:40–48, 1920.

    Google Scholar 

  31. Turner L: The structure of arachnoid granulations with observations on their physiological and pathological significance. Ann R Coll Surg Engl 29:237–264, 1961.

    PubMed  CAS  Google Scholar 

  32. Shabo AL, Maxwell DS: The morphology of the arachnoid villi: a light and electron microscopic study in the monkey. J Neurosurg 29:451–463, 1968.

    Article  Google Scholar 

  33. Nabeshima S, Reese TS, Landis DMD, et al.: Junctions in the meninges and marginal glia. J Comp Neurol 164:127–170, 1975.

    Article  PubMed  CAS  Google Scholar 

  34. Yamashima T: Functional ultrastructure of cerebrospinal fluid drainage channels in human arachnoid villi. Neurosurgery 22:633–641, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Alksne JF, Lovings ET: The role of arachnoid villus in the removal of red blood cells from the subarachnoid space. An electron microscope study in the dog. J Neurosurg 36:192–200, 1972.

    Article  PubMed  CAS  Google Scholar 

  36. Ellington E, Margolis G: Blocks of arachnoid villus by subarachnoid hemorrhage. J Neurosurg 30:651–657, 1969.

    Article  PubMed  CAS  Google Scholar 

  37. Torvik A, Bhatia R, Murthy VS: Transitory block of the arachnoid granulations following subarachnoid haemorrhage. A post mortem study. Acta Neurochir 41:137–146, 1978.

    Article  PubMed  CAS  Google Scholar 

  38. Alksne JF, Lovings ET: Functional ultrastructure of the arachnoid villus. Arch Neurol 27:371–377, 1972.

    Article  PubMed  CAS  Google Scholar 

  39. Tripathi BJ, Tripathi RC: Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol (Lond) 239:195–206, 1974.

    CAS  Google Scholar 

  40. d’Avella D, Cicciarello R, Albiero F, et al.: Scanning electron microscope study of human arachnoid villi. J Neurosurg 59:620–626, 1983.

    Article  PubMed  Google Scholar 

  41. Levine JE, Poulishock JT, Becker DP: The morphological correlates of primate cerebrospinal fluid absorption. Brain Res 241:31–41, 1982.

    Article  PubMed  CAS  Google Scholar 

  42. Jayatilaka ADP: An electron microscopic study of sheep arachnoid granulations. J Anat 99: 635–649, 1965.

    PubMed  CAS  Google Scholar 

  43. Gomez DG, Potts DG: The surface characteristics of arachnoid granulations. A scanning electron microscopical study. Arch Neurol 31: 88–93, 1974.

    Article  PubMed  CAS  Google Scholar 

  44. Weiler RO, Kida S, Zhang ET: Pathways of fluid drainage from the brain—morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284, 1992.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kida, S., Weller, R.O. (1993). Morphological Basis for Fluid Transport Through and Around Ependymal, Arachnoidal, and Glial Cells. In: Raimondi, A.J., Choux, M., Di Rocco, C. (eds) Intracranial Cyst Lesions. Principles of Pediatric Neurosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7281-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7281-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7283-1

  • Online ISBN: 978-1-4615-7281-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics