Skip to main content

Formation of Biological Reactive Intermediates by Peroxidases: Halide Mediated Acetaminophen Oxidation and Cytotoxicity

  • Chapter
Biological Reactive Intermediates IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 283))

Abstract

The physiological role of heme containing peroxidases in circulating or tissue infiltrating white cells, polymorphonuclear leukocytes, monocytes and eosinophils is to enable these cells to carry out their function of killing invading bacteria, viruses, parasites, protozoa, etc. or tumor cells. Another role is to inactivate regulators released into the blood stream such as estradiol, leukotrienes and chemotactic factors. The peroxidases in these cells are soluble but are located in granules or lysosomes. They are released into phagocytic vacuoles and/or from the cell when the cells are activated by invading microorganisms. Lactoperoxidase secreted into body fluids from the mammary gland, Zymbal gland, salivary gland, lacrimal gland and Harderian glands, etc may also play a role in killing invading organisms in body fluids. Peroxidases located in the rough endoplasmic reticular membrane and nuclear envelope of other cells are not released from the cell and are probably more concerned with the synthesis of regulators (eg. thyroxine by thyroid peroxidase, prostaglandin by prostaglandin synthetase) or the inactivation of regulators (eg. oestradiol by uterine peroxidase). The peroxidase of resident peritoneal macrophages or Kupffer cells of the liver are also located in the endoplasmic reticulum but are not discharged to phagocytic vacuoles so that their function may not be antimicrobial. Intestinal peroxidase and another uterine peroxidase have been attributed to infiltrated eosinophils whereas spleen peroxidase has been attributed to infiltrated monocytes (Banerjee, 1988). Peroxidases are therefore ubiquitous in tissues either as a result of endogenous activity or as a result of infiltrated white blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Banerjee, R.K. (1988). Membrane peroxidases. Molec. Cell. Biochem. 83, 105–128.

    CAS  PubMed  Google Scholar 

  • Boyd, J.A. and Eling, T.E. (1981). Prostaglandin endoperoxide synthetase dependent cooxidation of acetaminophen to intermediates which covalently bind to rabbit renal medullary microsomes. J. Pharmacol. Exp. Ther 219, 659–664.

    CAS  PubMed  Google Scholar 

  • Boyd, J.A. and Eling, T.E. (1985). Metabolism of aromatic amines by prostaglandin H sunthase. Environ. Health Perspect. 64, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, M.D. and Corbett, B.R. (1988). Metabolic activation and nucleic acid binding of acetaminophen and related amines during the respiratory burst of human gramlocytes. Chem. Res. Toxicol. 2, 260–267.

    Article  Google Scholar 

  • Dahlin, D.C., Miwa, G.T., Lu, A.Y.H. and Nelson, S.D. (1984). N-acetyl-p-benzoquinoneimine: a cytochrome P-450 mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. 81, 1327–1331.

    Article  CAS  PubMed  Google Scholar 

  • Fahimi, H.D., Gray, B.A. and Herzog, V.K. (1976). Cytochemical localization of catalase and peroxidase in sinusoidal cells of rat liver. Laboratory Investigation 34, 192–201.

    CAS  PubMed  Google Scholar 

  • Fernando, C.R., Calder, I.C. and Ham, K.N. (1980). Studies on the mechanism of toxicity of acetaminophen. Synthesis and reactions of N-acety1–2,6-dimethyl-p-benzoquinone imines. J. Medic. Chem. 23, 1153–1158.

    Article  CAS  Google Scholar 

  • Ferluga, J. and Allison, A. (1978). Role of mononuclear infiltrating cells in pathogenetics of hepatitis. Lancet 2, 610–611.

    Article  CAS  PubMed  Google Scholar 

  • Foote, C.S., Goyne, T.E. and Lehrer, R.I. (1983). Assessment of chlorination by human neutrophils. Nature 301, 715–716.

    Article  CAS  PubMed  Google Scholar 

  • Grisham, M.B., Jefferson, M.M., Melton, D.F. and Thomas, E.L. (1984). Chlorination of endogenous amines by isolated neutrophils. J. Biol. Chem. 259, 10404–10412.

    CAS  PubMed  Google Scholar 

  • Guarna, A., Corte, L.D., Giovannini, M.G., De Sarlo, F. and Sgaragli, G. (1983). A dimer metabolite of 2t-buty1–4-methoxyphenol in the rat. Drug Metab. Dispos. 11, 581–584.

    CAS  Google Scholar 

  • Hanel, A.M. and Lands, W.E.M. (1982). Modification of anti-inflammatory drug effectiveness by ambient lipid peroxides. Biochem. Pharmacol. 31, 3307–3311.

    Article  CAS  PubMed  Google Scholar 

  • Harvison, P.J., Guengerich, F.P., Rashed, M.S. and Nelson, S.D. (1988). Cytochrome P-450 isozyme selectivity in the oxidation of acetaminophen. Chem. Res.Toxicol. 1, 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke, H. and Mitchell, J.R. (1988). Acetaminophen toxicity. New Engl. J. Med. 319, 1601–1602.

    Article  Google Scholar 

  • Josephy, D. (1988). Activating aromatic amines by prostaglandin synthetose. Free Rad. Biol. Med. 6, 533–542.

    Article  Google Scholar 

  • Krauss, R.S., Angerman-Stewart, J., Eling, T.E., Dooley, K.L. and Kadlubar, F.F. (1989). The formation of 2-aminofluorene-DNA adducts in vivo: evidence for peroxidase-mediated activation. J. Biochem. Toxicol. 4, 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Laskin, D.L., Robertson, F.M., Pilaro, A.M. and Laskin, J.D. (1988). Activation of liver macrophages following phenobarbital treatment of rats. Hepatology 8, 1051–1055.

    Article  CAS  PubMed  Google Scholar 

  • Laskin, D.L., Pilaro, A.M. and Sungchul, J. (1986). Potential role of activated macrophages in acetaminophen hepatotoxicity. Toxicol. Appl. Pharmacol. 86, 216–226

    Article  CAS  PubMed  Google Scholar 

  • Lauterburg, B.H. and Velez, M.E. (1988). Glutathione deficiency in alcoholics: risk factor for paracetamol hepatotoxicity. Gut. 29, 1153–1157.

    Article  CAS  PubMed  Google Scholar 

  • Licht, H., Seeff, I.B. and Zimmermann, H.J. (1980). Apparent potentiation of acetaminophen hepatotoxicity by alcohol. Ann. Intern. Med. 92, 511.

    CAS  PubMed  Google Scholar 

  • Mason, R.P. and Fischer, V. (1986). Free radicals of acetaminophen: their subsequent reactions and toxicological significance. Federation Proc. 45, 2493–2499.

    CAS  Google Scholar 

  • McClain, C.J., Kromhout, J.P., Peterson, F.J. and Holtzman, J.L. (1980). Potentiation of paracetamol hepatotoxicity by alcohol. JAMA 244, 251–253.

    Article  CAS  PubMed  Google Scholar 

  • MacSween, R.N.M. (1981). Alcoholic liver disease: morphological manifestations: review by an international group. Lancet 1, 707.

    Google Scholar 

  • Marnett, L.J. and Eling, T.E. (1983). Cooxidation during prostaglandin biosynthesis: a pathway for the metabolic activation of xenobiotics. Rev. Biochem. Toxicol. 5, 135–172.

    CAS  Google Scholar 

  • Mayeno, A.N., Curran, A.J., Roberts, R.L. and Foote, C.S. (1989). Eosinophils preferentially use bromide to generate halogenating agents. J. Biol. Chem. 264, 5660.

    CAS  PubMed  Google Scholar 

  • Meunier, B. (1987). Horseradish peroxidase: a useful tool for modeling the extra-hepatic biooxidation of oxogens. Biochimie 69, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohandas, J., Duggin, G.G., Horvath, J.S. and Tiller, D.J. (1981). Metabolic oxidation of acetaminophen mediated by cytochrome P-450 mixed function oxidase and prostaglandin endoperoxide synthetase in rabbit kidney. Toxicol. Appl. Pharmacol. 61, 252–259.

    Article  CAS  PubMed  Google Scholar 

  • Moldeus, P. and Rahimtula, A. (1980). Metabolism of paracetamol to a glutathione conjugate catalysed by prostaglandin synthetase. Biochem. Biophys. Res. Comm. 96, 469–475.

    CAS  Google Scholar 

  • Moldeus, P., Hogberg, J. and Orrenius, S. (1978). Isolation and use of liver cells. Methods Enzymol. 52, 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Moldeus, P., Andersson, B., Rahimtula, A. and Berggren, M. (1982). Prostaglandin synthetase catalysed activation of paracetamol. Biochem. Pharmacol. 31, 1363–1370.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, P.J. (1984). Multiple mechanisms for the metabolic activation of carcinogenic arylamines. Free Radicals in Biology VI (Pryor, W.A., ed), pp. 289–322, Academic Press.

    Google Scholar 

  • O’Brien, P.J. (1985). Free-Radical Mediated DNA binding. Env. Health Perspect. 64, 219–232.

    Article  Google Scholar 

  • O’Brien, P.J. (1988a). Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics. Free Radicals Biol. Med. 4, 169–183.

    Article  Google Scholar 

  • O’Brien, P.J. (1988b). Oxidants formed by the respiratory burst: their physiological role and their involvement in the oxidative metabolism and activation of drugs. The Respiratory Burst and Its Physiological Significance (Sbarra, A.J., and Strauss, R.R., eds) pp. 203–232, Plenum Press.

    Chapter  Google Scholar 

  • O’Brien, P.J. (1990a). Activation of xenobiotics by hypohalites or peroxidases, H2O2 and halide in Biological Oxidation Systems. Ed. Reddy, C.C., Hamilton, G.A. and Madyastha, K.M. Academic Press, N.Y.

    Google Scholar 

  • O’Brien, P.J., Gregory, B., Fanney, R., Davison, W., Rahintula, A.D. and Tsuruta, Y. (1985). Microsomes and Drug Oxidations (Boobis, A.R., Caldwell, J., de Matteis, F., and Elcombe, C.R., eds) pp. 100–112, Taylor and Francis Ltd., London.

    Google Scholar 

  • O’Brien, P.J., Jatoe, S., McGirr, L. G., Khan, S. (1990b). Molecular activtion mechanisms involved in arylamine cytotoxicity: ’ peroxidase products in “N-oxidation of Drugs”, Biochemistry, Pharmacology and Toxicology, Ed. Hlavica, P., Damani, L.A., and Gorrod, J.W., Chapman and Hall (in press).

    Google Scholar 

  • Pilaro, A.M. and Laskin, D.L. (1986). Accumulation of activated mononuclear phagocytes in the liver following lipopolysaccharide treatment of rats. J. Leukocyte Biology 40, 29–41.

    CAS  Google Scholar 

  • Porubek, D.J., Rundgren, M., Harrison, P.J., Nelson, S.D. and Moldeus, P. (1987). Investigation of mechanisms of acetaminophen toxicity in isolated rat hepatocytes with acetaminophen analogues. Molec. Pharmacol. 31, 647–653.

    CAS  Google Scholar 

  • Potter, D.W. and Hinson, J.A. (1987a). Mechanisms of acetaminophen oxidation to N-acetyl-p-benzoquinoneimine by horseradish peroxidase and cytochrome P-450. J. Biol. Chem. 262, 966–973.

    CAS  PubMed  Google Scholar 

  • Potter, D.W. and Hinson, J.A. (1987b). The one and two-electron oxidation of acetaminophen catalysed by prostaglandin H synthase. J. Biol. Chem. 262, 974–980.

    CAS  PubMed  Google Scholar 

  • Prescott, L.G. (1983). Paracetamol Overdosage. Drugs 25, 290–314.

    Article  CAS  PubMed  Google Scholar 

  • Ritter, C.L. and Malejka-Giganti, D. (1989). Oxidations of the carcinogen N-hydroxy-N-(2-fluorenyl) acetamide by enzymatically or chemically generated oxidants of chloride and bromide. Chem. Res. Toxicol. 2, 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Ross, D., Norbeck, K. and Moldeus, P. (1985). The generation and subsequent fate of glutathionyl radicals in biological systems. J. Biol. Chem. 260, 15028–15032.

    CAS  PubMed  Google Scholar 

  • Rice, R.G. and Gomez-Taylor, M. (1986). Occurrence of by-products of strong oxidants reacting with drinking water contaminants. Env. Health Perspectives 69, 31–44.

    CAS  Google Scholar 

  • Sato, C., Matsuda, Y. and Lieber, C.S. (1981). Increased hepatotoxicity of acetaminophen after chronic ethanol consumption in the rat. Gastroenterology 80, 140–148.

    CAS  PubMed  Google Scholar 

  • Thomas, E.L., Grisham, M.B. and Jefferson, M.M. (1983). Myeloperoxidase dependent effect of amines on functions of isolated neutrophils. J. Clin. Invest. 72, 441–453.

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta, Y., Subrahmanyam, V.V., Marshall, W. and O’Brien, P.J. (1985). Peroxidase mediated irreversible binding of arylamine carcinogens to DNA intact polymorphonuclear leukocytes activated by a tumour promoter. Chem.-Biol. Interacn. 53, 25–35.

    Article  CAS  Google Scholar 

  • Uetrecht, J.P. (1988). Drug-induced agranulocytosis and other effects mediated by peroxidases during the respiratory burst. The Respiratory Burst and Its Physiological Significance (Sbarra, A.J., and Strauss, R.R., eds) pp. 233–244, Plenum Press.

    Google Scholar 

  • Uetrecht, J.P. (1989). Idiosyncratic Drug Reactions: possible role of reactive metabolites generated by leukocytes. Pharmaceutical Research 6, 265–273.

    CAS  Google Scholar 

  • Van Berkel, T.J. (1974). Difference spectra, catalase-and peroxidase activities of isolated parenchymal and non-parenchymal cells from rat liver. Biochem. biophys. Res. Comm. 61, 204–209.

    Article  PubMed  Google Scholar 

  • Weiss, S.J. (1986). Chlorinated oxidants generated by leukocytes. Adv. in Free Radical Biology and Medicine 2, 91–106.

    Article  Google Scholar 

  • Weiss, S.J., Test, S.T., Eekmann, C.M., Roos, D. and Regiane, D. (1986). Brominating oxidants generated by human eosinophils. Science 234, 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Yamazoe, Y., Miller, D.W., Weiss, C.C., Dooley, K.L., Zenser, T.V., Beland, F.A. and Kadlubar, F.F. (1985). DNA adducts formed by ring-oxidation of the carcinogen 2-naphthylamine with prostaglandin H synthase in vitro and in dog urothelium in vivo. Carcinogenesis, 6, 1379–1387.

    Article  CAS  Google Scholar 

  • Yamazoe, Y., Zenser, T.V., Miller, D.W. and Kadlubar, F.F. (1989). The benzidine: DNA adduct formed by peroxidase and H202. Carcinogenesis 9, 1635–1641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

O’Brien, P.J., Khan, S., Jatoe, S.D. (1991). Formation of Biological Reactive Intermediates by Peroxidases: Halide Mediated Acetaminophen Oxidation and Cytotoxicity. In: Witmer, C.M., Snyder, R.R., Jollow, D.J., Kalf, G.F., Kocsis, J.J., Sipes, I.G. (eds) Biological Reactive Intermediates IV. Advances in Experimental Medicine and Biology, vol 283. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5877-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5877-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5879-4

  • Online ISBN: 978-1-4684-5877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics