Skip to main content

Sodium/Proton Antiporters in the Mitochondrial Inner Membrane

  • Chapter
Cellular Ca2+ Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 232))

Abstract

The existence of membrane proteins designed for Na+/H+ exchange has been established in both eukaryotic and prokaryotic systems (1), and the plethora of recent reviews (see, for example, refs. 1–3 and references therein) testifies to the perceived importance of plasma membrane Na+/H+ antiporters to the physiology of the cell. A consensus is now developing that the plasmalemma of most cells contains an electroneutral Na+/H+ antiporter which is inhibited by amiloride and lithium ions, and whose primary physiological role is cellular pH homeostasis. These operating characteristics have been found to be similar in a variety of cell types (2), and the conclusion has been drawn that these properties are representative of all plasma membrane Na+/H+ antiporters (3). This implies that plasma membranes contain only one type of Na+/H+ antiporter, that Na+ is the only physiological substrate for such antiporters, and that K+, in particular, is not a substrate for plasmalemmal Na+/H+ antiporters. How reliable are these conclusions?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krulwich, T. A. (1983) Biochim. Biophys. Acta 726, 245–264

    Article  PubMed  CAS  Google Scholar 

  2. Grinstein, S., and Rothstein, A. (1986) J. Membr. Biol. 90, 1–12

    Article  PubMed  CAS  Google Scholar 

  3. Aronson, P. S. (1985) Annu. Rev. Physiol. 47, 545–5604.

    Article  PubMed  CAS  Google Scholar 

  4. Nakashima, R. A., and Garlid, K. D. (1982) J. Biol. Chem. 257. 9252–9254

    PubMed  CAS  Google Scholar 

  5. Seiler, S. M., Cragoe, E. J., Jr., and Jones, L. R. (1985) J. Biol. Chem. 260, 4869–4876

    PubMed  CAS  Google Scholar 

  6. Aronson, P. S. and Igarashi, P. (1986) In: Current Topics in Membranes and Transport. Vol. 26 (Aronson, P. S. and Boron, W. F., eds.) pp. 57–75, Academic Press, Orlando

    Google Scholar 

  7. Garlid, K. D. (1980) J. Biol. Chem. 255, 11273–11279

    PubMed  CAS  Google Scholar 

  8. Denton, R. M., and McCormack, J. G. (1985) Am. J. Physiol. 249. E543–E554

    PubMed  CAS  Google Scholar 

  9. Hansford, R. G. (1987) Biochem. J. 241, 145–151

    PubMed  CAS  Google Scholar 

  10. Crompton, M., and Heid, I. (1978) Eur. J. Biochem. 91, 599–608

    Article  PubMed  CAS  Google Scholar 

  11. Garlid, K. D. (1979) Biochem. Biophys. Res. Commun. 87, 842–847

    Article  PubMed  CAS  Google Scholar 

  12. Beavis, A. D., Brannan, R. D., and Garlid, K. D. (1985) J. Biol. Chem. 260, 13424–13433

    PubMed  CAS  Google Scholar 

  13. Chappell, J. B. and Perry, S. V. (1954) Nature 173, 1094–1095

    Article  PubMed  CAS  Google Scholar 

  14. Tedeschi, H. and Harris, D. L. (1955) Arch. Biochem. Biophys. 58, 52–67

    Article  PubMed  CAS  Google Scholar 

  15. Gamble, J. L., Jr. and Garlid, K. D. (1970) Biochim. Biophys. Acta 211, 223–232

    Article  CAS  Google Scholar 

  16. Garlid, K. D. (1978) Biochem. Biophys. Res. Commun. 83. 1450–1455

    Article  PubMed  CAS  Google Scholar 

  17. Gamble, J. L., Jr. and Hackenbrock, C. R. (1969) Federation Proc. 28, 283a

    Google Scholar 

  18. Mitchell, P. and Moyle, J. (1969) Eur. J. Biochem. 9, 149–155

    Article  PubMed  CAS  Google Scholar 

  19. Garlid, K. D., DiResta, D. J., Beavis, A. D., and Martin, W. H. (1986) J. Biol. Chem. 261, 1529–1535

    PubMed  CAS  Google Scholar 

  20. Pfeiffer, D.R. and Lardy, H. A. (1976) Biochemistry 15, 935–943

    Article  PubMed  CAS  Google Scholar 

  21. Garlid, K. D., and Beavis, A. D. (1985) J. Biol. Chem. 260. 13434–13441

    PubMed  CAS  Google Scholar 

  22. Brierley, G. P., Jurkowitz, M., and Jung, D. W. (1978) Arch. Biochem. Biophys. 190. 181–192

    Article  PubMed  CAS  Google Scholar 

  23. Brierley, G. P., and Jung, D. W. (1980) Pharmac. Ther. 8., 193–216

    Article  CAS  Google Scholar 

  24. Martin, W. H. (1984) Ph. D. thesis, Medical College of Ohio, Toledo

    Google Scholar 

  25. Jung, D. W., Farooqui, T., Utz, E. and Brierley, G. P. (1984) J. Bioen. Biomemb. 16, 379–390

    Article  CAS  Google Scholar 

  26. Martin, W. H., Beavis, A. D. and Garlid, K. D. (1984) J. Biol. Chem. 259, 2062–2065

    PubMed  CAS  Google Scholar 

  27. DiResta, D. J., Kutshke, K. P., Hottois, M. D., and Garlid, K. D. (1986) Amer. J. Physiol. 251, R787–R793

    PubMed  CAS  Google Scholar 

  28. Martin, W. H., DiResta, D. J., and Garlid, K. D. (1986) J. Biol. Chem. 261, 12300–12305

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Garlid, K.D. (1988). Sodium/Proton Antiporters in the Mitochondrial Inner Membrane. In: Pfeiffer, D.R., McMillin, J.B., Little, S. (eds) Cellular Ca2+ Regulation. Advances in Experimental Medicine and Biology, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0007-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0007-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0009-1

  • Online ISBN: 978-1-4757-0007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics