Skip to main content

Internal Dosimetry in Pediatric Nuclear Medicine

  • Chapter
Pediatric Nuclear Medicine

Abstract

The science of internal dosimetry is a specialty within the general field of health physics. A working definition of health physics might be “the protection of people and their environment from the harmful effects of radiation while allowing its beneficial applications.” With any application involving the use of ionizing radiation, the risks of its use must be balanced against its benefits. With medical uses of radiation, the benefits are immediately obvious and are directly received by the person exposed to the risk. This makes the balancing process considerably easier than, for example, the use of nuclear power, where a small number of people incur a risk so a broad region can receive a benefit. This balance, however, cannot be evaluated without some quantification of the risks. Internal dosimetry calculations provide estimates of the amount of radiation that is absorbed by different organs or organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold R, Subramanian G, McAfee J et al. Comparison of 99mTc complexes for renal imaging. J Nucl Med 1975;16:357–367

    CAS  PubMed  Google Scholar 

  2. Atkins H, Cloutier R, Lathrop K et al. MIRD dose estimate report no. 3: radiation absorbed dose estimates for technetium-99m sulfur colloid in various liver conditions. J Nucl Med 1975;16:108A-108B

    Google Scholar 

  3. Atkins H, Robertson J, Croft B et al. MIRD dose estimate report no. 9: radiation absorbed dose estimates for radioxenons in lung imaging. J Nucl Med 1980; 21:459–465

    CAS  PubMed  Google Scholar 

  4. Atkins H, Thomas S, Buddemeyer U, Chervu L. MIRD dose estimate report no. 14: radiation absorbed dose from technetium-99m-labeled red blood cells. J Nucl Med 1990;31:378–380

    CAS  PubMed  Google Scholar 

  5. Bell E, Subramanian G, Blair R, McAfee J. Bone scanning in pediatrics. In: Pediatric Nuclear Medicine. Philadelphia: Saunders, 1974:84–94

    Google Scholar 

  6. Berman M, Braverman L, Burke J et al. MIRD dose estimate report no. 5: radiation absorbed dose estimates for I-123, I-124,I-125,I-126,1–130,1–131, and 1–132 as sodium iodide. J Nucl Med 1975; 16: 857–860

    Google Scholar 

  7. Blau M, Wicks R, Thomas S, Lathrop K. MIRD dose estimate report no. 10: radiation absorbed dose estimates for albumin microspheres labeled with tech-netium-99m. J Nucl Med 1982;23:915–917

    CAS  PubMed  Google Scholar 

  8. Blaufox M, Gruskin B, Sandler P, et al. Detection of ureteral-vesical reflux in children with 99mTc -pertechnetate. J Nucl Med 1970;11:622–623

    Google Scholar 

  9. Castle V, Shulkin B, Coates G, Andrew M. The use of indium-111 oxine platelet scintigraphy and survival studies in pediatric patients with thrombocytopenia. J NuclMed 1989;30:1819–1824

    CAS  Google Scholar 

  10. Cloutier R, Watson E, Hayes R et al. MIRD dose estimate report no. 2: radiation absorbed dose estimates for gallium-66-, gallium-67-, gallium-68- and galliums-citrate. J Nucl Med 1973;14:755–756

    Google Scholar 

  11. Coates G, O’Brodovich H. Extrapulmonary radioactivity in lung permeability measurements. J Nucl Med 1987;28:903–906

    CAS  PubMed  Google Scholar 

  12. Coenegracht J, Oei T, van Breda Vriesman R. The influence of bilirubin, alcohol, and certain drugs on the kinetics of 99mTc -diethyl IDA (EHIDA) in humans. Eur J Nucl Med 1983;8:140–144

    Article  CAS  PubMed  Google Scholar 

  13. Cristy M, Eckerman K. Specific Absorbed Fractions of Energy at Various Ages from Internal Photons Sources. ORNL/TM-8381 V1-V7. Oak Ridge, TN: Oak Ridge National Laboratory, 1987

    Google Scholar 

  14. Datz F. The role of radionuclide studies in esophageal disease. J Nucl Med 1984;25:1040–1045

    CAS  PubMed  Google Scholar 

  15. Dyrbye M, Brendstrup L, Carlsen N. Micturition cystourethrography using x-ray or scintigraphy in children with reflux. Eur J Nucl Med 1983;8:A14

    Google Scholar 

  16. Ellett W, Humes R. MIRD pamphlet no. 8: absorbed fractions for small volumes containing photon-emitting radioactivity. J Nucl Med 1972;7(suppl 6)

    Google Scholar 

  17. Erlich C, Papanicolaou N, Treves T et al. Splenic scintigraphy using Tc-99m-labeled heat-denatured red blood cells in pediatric patients: concise communication. J Nucl Med 1982;23:209–213

    Google Scholar 

  18. Evans I, Hambleton G, Mann N, Brown J. The distribution of lung damage in children with cystic fibrosis and its relationship to colonization with Pseudomonas aeruginosa. Eur J Nucl Med 1987;12: 620–622

    Article  CAS  PubMed  Google Scholar 

  19. Frietas J, Swanson D, Gross M, Sisson J. Iodine-131: optimal therapy for hyperthyroidism in children and adolescents? J Nucl Med 1979;20:847–850

    Google Scholar 

  20. Gainey M, Siegel J, Smergel E, Jara B. Indium-111-labeled white blood cells: dosimetry in children. J NuclMed 1988;29:689–694

    CAS  Google Scholar 

  21. Gelbard A, Benua R, Laughlin J et al. Quantitative scanning of osteogenic sarcoma with nitrogen-13-labeled L-glutamate. J Nucl Med 1979;20:782–784

    CAS  PubMed  Google Scholar 

  22. Gelfand M, Silberstein E, Cox J. Diagnosis of Meckel’s diverticulum by scintigraphy: clinical and pathological correlation. J Nucl Med 1976; 17:553

    Google Scholar 

  23. Goodwin D, Finston R, Smith SI. The distribution and dosimetry of In-111l labeled leukocytes and platelets in humans. In: Proceedings, Third International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1981

    Google Scholar 

  24. Guillet J, Basse-Cathalinat B, Christophe E et al. Routine studies of swallowed radionuclide transit in paediatrics: experience with 400 patients. Eur J Nucl Med 1984;9:86–90

    Article  CAS  PubMed  Google Scholar 

  25. Gupta S et al. Testicular-scrotal content of 201T1 and 67Ga after intravenous administration. Int J Nucl Med Biol 1981;8:211–213

    Article  CAS  PubMed  Google Scholar 

  26. Ham H, Piepsz A, Georges B et al. Quantitation of esophageal transit by means of 81mKr. Eur J Nucl Med 1984;9:362–365

    Article  CAS  PubMed  Google Scholar 

  27. Handmaker H, O’Mara R. Gallium imaging in pediatrics. JNuclMed 1975;16:533

    Google Scholar 

  28. Harcke H. Jr. Bone imaging in infants and children: a review. J Nucl Med 1978;19:324–329

    PubMed  Google Scholar 

  29. Hattner R, Maltz H, Holliday M. Differentiation of reversible ischemia from end-stage renal failure in nephrotic children with 131I-hippurate dynamic scintigraphy. J Nucl Med 1977; 18:438–440

    CAS  PubMed  Google Scholar 

  30. Hogg J, Williams J, Richardson J et al. Age as a factor in the distribution of lower airway conductance and in the pathologic anatomy of obstructive lung disease. N Engl J Med 1970;282:1283–1287

    Article  CAS  PubMed  Google Scholar 

  31. International Commission of Radiation Units and Measurements, Radiation Quantities and Units, ICRU 33. International Commission on Radiation Units and Measurements, 1980 Bethesda, MD.

    Google Scholar 

  32. International Commission on Radiological Protection. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30. New York: Pergamon Press, 1979

    Google Scholar 

  33. International Commission on Radiological Protection. Protection of the Patient in Nuclear Medicine. ICRP Publication 52. New York: Pergamon Press, 1987

    Google Scholar 

  34. International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. ICRP Publication 53. New York: Pergamon Press, 1988

    Google Scholar 

  35. International Commission on Radiological Protection. Radionuclide Transformations: Energy and Intensity of Emissions. New York: Pergamon Press, 1983

    Google Scholar 

  36. International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. New York: Pergamon Press, 1977

    Google Scholar 

  37. International Commission on Radiological Protection. Report of the Task Group on Reference Man. ICRP Publication 23. New York: Pergamon Press, 1975

    Google Scholar 

  38. Jacobsson L, Mattsson S, Johansson L et al. Biokinetics and dosimetry of 131I-metaiodobenzylguanidine (MIBG). In: Proceedings, Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1985

    Google Scholar 

  39. Jaw T, Wu C-C, Ho Y-H et al. Diagnosis of obstructive jaundice in infants: Tc-99m DISIDAin duodenal juice. J Nucl Med 1984;25:360–363

    CAS  PubMed  Google Scholar 

  40. Jeandot R, Lambert B, Brendel A et al. Lung ventilation and perfusion scintigraphy in the follow up of repaired congenital diaphragmatic hernia. Eur J Nucl Med 1989;15:591–596

    Article  CAS  PubMed  Google Scholar 

  41. Kilburn E, Gilday D, Ash J. Meckel’s diverticula-multiple view imaging. J Nucl Med 1976;25: 360–363

    Google Scholar 

  42. Knapp W, Helus F, Ostertag H et al. N-13 L-gluta-mate uptake in malignancy: its relationship to blood flow. J Nucl Med 1982;25:989–997

    Google Scholar 

  43. Krahwinklel W, Herzog H, Feinendegen L. Pharmacokinetics of thallium-201 in normal individuals after routine myocardial scintigraphy. J Nucl Med 1988;29:1582–1586

    Google Scholar 

  44. Lashford L, Moyes J, Ott R et al. The biodistribution and pharmacokinetics of meta-iodobenzylguanidine in childhood neuroblastoma. Eur J Nucl Med 1988; 13:574–577

    Article  CAS  PubMed  Google Scholar 

  45. Lathrop K, Atkins H, Berman M et al. MIRD dose estimate report no. 8: radiation absorbed dose estimates for technetium-99m as sodium pertechnetate. J Nucl Med 1976;17:74–77

    Google Scholar 

  46. Lee W, Mpanias P, Wimmer R et al. Use of 1–123 in early radioiodide uptake and its suppression in children and adolescents with hyperthyroidism. J Nucl Med 1978;19:985–993

    CAS  PubMed  Google Scholar 

  47. Lee PS, Gerrity TR, Hass FJ, Lourenco RV. A model for tracheobronchial clearance of inhaled particles in man and comparison with data. IEEE Trans Biomed Eng. 1979;26(ll):624–630

    Article  CAS  PubMed  Google Scholar 

  48. Lindmo T, Skretting A, Nakken K. An examination of different mathematical models for renal function as measured by 131I-hippuran renography. Med Phys 1974;1:193–197

    Article  CAS  PubMed  Google Scholar 

  49. Loevinger R, Budinger T, Watson E. MIRD Primer for Absorbed Dose Calculations. New York: Society of Nuclear Medicine, 1988

    Google Scholar 

  50. Marcus C, Kuperus J. Pediatric renal iodine-123 orthoiodohippurate dosimetry. J Nucl Med 1985; 26:1211–1214

    CAS  PubMed  Google Scholar 

  51. Marcus C, Stabin M, Watson E. Pediatric radiation dose from [mIn]leukocytes. J Nucl Med 1986; 27:1220–1221

    CAS  PubMed  Google Scholar 

  52. Marcus C, Stabin M, Watson E et al. Dosimetry of leukocytes labeled with Tc-99m-albumin colloid. Nucl Med Commun 1988;9:249–254

    Article  CAS  PubMed  Google Scholar 

  53. Miller J. Technetium-99m-labeled red blood cells in the evaluation of hemangiomas of the liver in infants and children. J Nucl Med 1987;28:1412–1418

    CAS  PubMed  Google Scholar 

  54. Moyes J, Babich J, Carter R et al. Quantitative study of radioiodinated metaiodobenzylguanidine uptake in children with neuroblastoma: correlation with tumor histopathology. J Nucl Med 1989;30:474–480

    CAS  PubMed  Google Scholar 

  55. Papanicolaou N, Treves S. Pulmonary scintigraphy in pediatrics. Semin Nucl Med 1980;10:259–285

    Article  CAS  PubMed  Google Scholar 

  56. Piepsz A, Ham H, Struyven J et al. Simultaneous determination of the separate glomerular filtration rate and the intrarenal transit times by means of the Tc-99m-DTPA complex: validation and results in pediatric urology. J Nucl Med 1978;19:699

    Google Scholar 

  57. Poston J. Application of the effective dose equivalent to nuclear medicine patients. J Nucl Med 1993; 34:714–716

    CAS  PubMed  Google Scholar 

  58. Poston J, Aissi A, Hui T, Jimba B. A preliminary model of the circulating blood for use in radiation dose calculations. In Schlafke-Stelson A, Watson E (eds): Fourth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1985: 574–586

    Google Scholar 

  59. Powell G, Schuchard R, Reft C, Harper P. Radiation absorbed dose to tracheal mucosa from inhaled oxygen-15-labeled carbon dioxide. Ann Neurol 1984; 15:S107-S109

    Article  PubMed  Google Scholar 

  60. Powsner E, Raeside D. Diagnostic Nuclear Medicine. Orlando, FL: Grune & Stratton, 1971:184

    Google Scholar 

  61. Prince J, Zu’bi S, Haag B. Thyroid imaging with iodine-125 and technetium-99m. Eur J Nucl Med 1979;4:37–41

    CAS  PubMed  Google Scholar 

  62. Reiman R, Benua R, Gelbard A et al. Imaging of brain tumors after administration of 1-(N-13) glutamate: concise communication. J Nucl Med 1982; 23:682–687

    CAS  PubMed  Google Scholar 

  63. Rosen P, Kuruc A, Treves S. The determination of relative renal function in a pediatric population using Tc-99m DTPA and Tc-99m DMSA. J Nucl Med 1985;26(5):P10

    Google Scholar 

  64. Sinzinger H, Schroth B, Silhan I et al. Experience with radioisotopic vesico-ureteral reflux measurements in 250 children. Eur J Nucl Med 1983;8 (5):A15.

    Google Scholar 

  65. Soundy R, Tyrrell D, Pickett R, Stabin M. The radiation dosimetry of 99mTc -exametazime. Nucl Med Commun 1990;11:791–799

    Article  CAS  PubMed  Google Scholar 

  66. Stabin M, Hach A. Radiation dosimetry and safety. In Gilday D, Hahn K (eds): Paediatrics. Stuttgart: Gustav Fischer Verlag, 1994 (in press)

    Google Scholar 

  67. Stabin M, Taylor A Jr, Conway J. Radiation dosimetry for Tc-99m MAG-3 in adults and children. In: Proceedings, Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1992

    Google Scholar 

  68. Stabin M, Taylor A Jr, Eshima D, Wooten W. Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine-131 OIH based on human biodistribution studies. J Nucl Med 1992;33:33–40

    CAS  PubMed  Google Scholar 

  69. Thakur M, Seifert C, Madsen M et al. Neutrophil labeling: problems and pitfalls. Semin Nucl Med 1984;14:107–117

    Article  CAS  PubMed  Google Scholar 

  70. Thomas S, Atkins H, McAfee J et al. MIRD dose estimate report no. 12: radiation absorbed dose for technetium-99m diethylenetriaminepentaacetic acid. J Nucl Med 1984;25:503–505

    CAS  PubMed  Google Scholar 

  71. Vestergren E, Jacobsson L, Mattsson S et al. Biokinetics and dosimetry of Tc-99m HMPAO in children. In: Proceedings, Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN, 1992

    Google Scholar 

  72. Weber D, Eckerman K, Dillman LT, Ryman J.

    Google Scholar 

  73. MIRD: Radionuclide Data and Decay Schemes. New York: Society of Nuclear Medicine, 1989

    Google Scholar 

  74. Weber D, Makler PT Jr, Watson E et al. MIRD dose estimate report no. 13: radiation absorbed dose from technetium-99m-labeled bone imaging agents. J Nucl Med 1989;30:1117–1122

    CAS  PubMed  Google Scholar 

  75. Weiblen B, Forstrom L, McCullough J. Studies of the kinetics of indium-lll-labeled granulocytes. J Lab Clin Med 1979;94:246–255

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stabin, M.G. (1995). Internal Dosimetry in Pediatric Nuclear Medicine. In: Treves, S.T. (eds) Pediatric Nuclear Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4205-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4205-3_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4207-7

  • Online ISBN: 978-1-4757-4205-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics