Skip to main content

Structure-Activity Relationship of the Agonist-Antagonist Transition on the Type 1 Angiotensin II Receptor; the Search for Inverse Agonists

  • Chapter
Recent Advances in Cellular and Molecular Aspects of Angiotensin Receptors

Abstract

Peptidic angiotensin II (Ang) antagonists have been mostly reported to behave in a more or less competitive fashion. Thus, reinforcing the view of competitive analogues being compounds which can reversibly bind without producing any biological response to the receptor as well as competing with an agonist (e.g. Ang or other peptidic agonists) for the same site. Recently, a new concept was introduced that changes the classical view of agonist-antagonist action. This concept presents the receptor as a dynamic structure capable of undergoing a conformational change between a biologically active and an inactive form. A bound ligand may shift the equilibrium to either side, according to its pharmacological character as an agonist or an antagonist: An antagonist favoring the inactive form of the receptor represents what is called an “inverse agonist”. All peptidic Ang analogues bind to the same locus on the AT1 receptor but non-peptidic AT1 binding compounds (e.g. L-158,809 and DuP 753) seem to bind to different loci. Furthermore, it has also been shown that non-peptidic Ang antagonists do not possess the ability to recognize Ang receptors from amphibian or avian origins. In the present contribution, we attempt to fathom the molecular parameters that bring the transition from an agonistic to an antagonistic behaviour in order to select the compounds that display most profoundly these antagonistic features. We believe to possess the necessary tools (enlarged but planar aromatic side-chains in position 8) in order to explore the concept of inverse agonism on the mammalian AT1 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. and Lefkowitz, R. J., Constitutive Activation of the α1B-Adrenergic Receptor by All Amino Acid Substitution at a Single Site, J. Biol. Chem. 267 (1992) 1430–1433.

    PubMed  CAS  Google Scholar 

  2. Allen, L.F., Lefkowitz, R.J., Caron, M. and Cotecchia, S., G-protein-coupled receptor genes as protooncogenes: Constitutively activating mutation of the α1B-adrenergic receptor enhances mitogenesis and tumorigenecity, Proc. Natl. Acad. Sci. USA 88 (1991) 11354–11358.

    Article  PubMed  CAS  Google Scholar 

  3. Samama, P., Cotecchia, S., Costa, T. and Lefkowitz, R.J., A Mutation-induced Activated State of the β2-Adrenergic Receptor, J. Biol. Chem. 268 (1993) 4625–4636.

    PubMed  CAS  Google Scholar 

  4. Robinson, P.R., Cohen, G.B. Zhukovsky, E.A. and Oprian, D.D., Constitutively active mutants of rhodopsin, Neuron 9 (1992) 719–725.

    Article  PubMed  CAS  Google Scholar 

  5. Schutz, W. and Freissmuth, M., Reverse intrinsic activity of antagonists on G protein-coupled receptors, Trends Pharmacol. Sci. 13 (1992) 376–380.

    Article  PubMed  CAS  Google Scholar 

  6. Costa, T., Ogino, Y., Munson, P.J., Onaran, H.O. and Rodbard, D., Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: Thermodynamic interpretation of negative antagonism and receptor activity in the absence of ligand, Mol. Pharmacol. 41 (1992) 549–560.

    PubMed  CAS  Google Scholar 

  7. Barker, E.L., Westphal, R.S. Schmidt, D. and Sanders-Bush, E., Constitutively active 5′-hydroxytryp-tamine 2C receptors reveal novel inverse agonist activity of receptor ligands, J. Biol. Chem. 269 (1994) 11687–11690.

    PubMed  CAS  Google Scholar 

  8. Chidiac, P., Hebert, T., Valiquette, M., Dennis, M. and Bouvier, M., Inverse agonist activity of β-adrenergic antagonists, Mol. Pharmacol. 45 (1994) 490–499.

    PubMed  CAS  Google Scholar 

  9. Parma, J., Duprez, L., Van Sade, J., Cochaux, P., Gervy, P., Mockel, J., Dumont, J. and Vassart, G., Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas, Nature 365 (1993) 649–651.

    Article  PubMed  CAS  Google Scholar 

  10. Shenker, A., Laue, L., Kosug, S., Merendino, J.J., Minegishi, T. and Cutler, J.B., A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty, Nature 365 (1993) 652–654.

    Article  PubMed  CAS  Google Scholar 

  11. Young, D., Waitches, G., Birchmeier, C., Fasano, O. and Wigler, M., Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains, Cell 45 (1986) 711–719.

    Article  PubMed  CAS  Google Scholar 

  12. Regoli, D., Park, W.K. and Rioux, F., Pharmacology of Angiotensin, Pharmacological Reviews 26 (1974) 69–123.

    PubMed  CAS  Google Scholar 

  13. Griendling, K.K., Lassèque, B. and Alexander, R.W., The Vascular Angiotensin (AT1) Receptor, Thrombosis and Haemostasis 70 (1993) 188–192.

    PubMed  CAS  Google Scholar 

  14. Timmermans, P.B.M.W.M., Wong, P.C., Chiu, A.T., Herblin, W.F., Benfield, P., Carini, D.J., Lee, R.J., Wexler, R.R., Saye, J.A.M. and Smith, R.D., Angiotensin II Receptors and Angiotensin II Receptor Antagonists, Pharmacological Reviews 45 (1993) 205–247.

    PubMed  CAS  Google Scholar 

  15. Dudley, D.T., Panek, R.L., Major, T.C., Lu, G.H., Burns, R.F., Klinkefus, B.A., Hodges, J.C. and Weishaar, R.E., Subclasses of angiotensin II binding sites and their functional significance, Mol. Pharmacol. 38 (1990) 370–377.

    PubMed  CAS  Google Scholar 

  16. Bottari, S.P., King, I.N., Reichlin, S., Dahlstroem, I., Lydon, N. and DeGasparo, M., The angiotensin AT2 receptor stimulates protein tyrosin Phosphatase activity and mediates inhibition of particulate guanylate cyclase, Biochem. Biophys. Res. Commun. 183 (1992) 206–211.

    Article  PubMed  CAS  Google Scholar 

  17. Kambayashi, Y., Bardhan, S., Takahashi, K., Tsuzuki, S. Inui, H., Hamakubo and Inagami, T., Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine Phosphatase inhibition, J. Biol. Chem. 268 (1993) 24543–24546.

    PubMed  CAS  Google Scholar 

  18. Bernier, S.G., Fournier, A. and Guillemette, G., A specific binding site recognizing a fragment of angiotensin II in bovine adrenal cortex membranes, Eur. J. Pharmacol. 271 (1994) 55–63.

    Article  PubMed  CAS  Google Scholar 

  19. Siemens, I.R., Reagan, L.P., Yee, D.K. and Fluharty, S.J., Biochemical characterizaton of two distinct angiotensin AT2 receptor populations in murine neuroblastoma N1E-115 cells, J. Neurochem. 62 (1994) 2106–2115.

    Article  PubMed  CAS  Google Scholar 

  20. Servant, G., Escher, E. and Guillemette, G., Non-AT1 and non-AT2 binding sites observed in PC12 cells after confluency, (to be published).

    Google Scholar 

  21. Murphy, T.J., Nakamura, Y., Takeuchi, K. and Alexander, R.W., A cloned angiotensin receptor isoform from the turkey adrenal gland is pharmacologically distinct from mammalian angiotensin receptors, Mol. Pharmacol. 44 (1993) 1–7.

    PubMed  CAS  Google Scholar 

  22. Ji, H., Sanberg, K., Zhang, Y., Catt, K.J., Molecualr cloning, sequencing and functional expression of an amphibian angiotensin II receptor, Biochem. Biophys. Res. Commun. 194 (1993) 756–762.

    Article  CAS  Google Scholar 

  23. Nishimura, H., Walker, O.E., Patton, C.M., Madison, A.T., Chiu, A.T. and Keiser, J., Novel angiotensin receptor subtypes in fowl, Am. J. Physiol. 267 (1994) R1174–R1181.

    PubMed  CAS  Google Scholar 

  24. Wong, P.C., Hart, S.D., Chiu, A.T., Herblin, W.F. Carini, D.J., Smith, R.D., Wexler, R.R. and Timmermans, P.B.M.W.M., Pharmacology of DuP 532, a Selective and Noncompetitive AT1 Receptor Antagonist, J. Pharmacol. Experm. Therap. 259 (1991) 861–870.

    CAS  Google Scholar 

  25. Chang, R.S.L., Siegl, P.K.S., Clineschmidt, B.V., Mantlo, N.B., Chakravarty, P.K., Greenlee, W.J., Patchett, A.A. and Lotti, V.J., In Vitro Pharmacology of L-158, 809, a New Highly Potent and Selective Angiotensin II Receptor Antagonist, J. Pharmacol. Experm. Therap. 262 (1992) 133–138.

    CAS  Google Scholar 

  26. Perlman, S. Schambye, H.T., Riviero, R.A., Greenlee, W.J., Hjorth, S.A. and Schwartz, T.W., Non-peptidic angiotensin agonist. Functional and molecular interaction with the AT1 receptor, J. Biol. Chem. 270 (1995) 1493–1496.

    Article  PubMed  CAS  Google Scholar 

  27. Pérodin, J and Escher, E.(unpuplished results).

    Google Scholar 

  28. Fraker, PJ. and Speck, J.C., Protein and cell iodination with a sparingly soluble chloroamine, 1, 3, 4, 6-tetrachloro-3a, 6a-diphenylglycoloryl, Biochem. Biophys. Res. Commun. 80 (1978) 849–857.

    Article  PubMed  CAS  Google Scholar 

  29. Merrifield, R.B., Solid-phase peptide synthesis. I: The synthesis of a tetrapeptide, J. Am. Chem. Soc, 85 (1963)2149–2154.

    Article  CAS  Google Scholar 

  30. Leduc, R., Bernier, M. and Escher, E., Angiotensin-II Analogues. I: Synthesis and Incorporation of the Halogenated Amino Acids 3-(4′-Iodophenyl)alanine, 3-(3′, 5′-Dibromo-4′-chlorophenyl)alanine, 3-(3′, 4′, 5′-Tribromophenyl)alanine, and 3-(2′, 3′, 4′, 5′, 6′-Pentabromophenyl)alanine, Helvetica Chimica acta 66 (1983) 960–970.

    Article  CAS  Google Scholar 

  31. Escher, E., Bernier, M. and Parent, P., Angiotensin II Analogues. Part II. Synthesis and Incorporation of the Sulfur-Containing Aromatic Amino Acids: L-(4′-SH)Phe, L-(4′-SO2NH2)Phe, L-(4′-SO3 )Phe and L-(4′-S-CH3)Phe, Helvetica Chimica acta 66 (1983) 1355–1365.

    Article  CAS  Google Scholar 

  32. Quang, K.D., Thanei, P., Caviezel, M. and Schwyzer, R., The Synthesis of (S)-(+)-2-Amino-3-(1-adamantyl)-propionic Acid (L-(+)-Adamantylalanine, Ada) as a “Fat” or “Super” Analogue of Leucine and Phenylalanine, Helvetica Chimica acta 62 (1979) 956–964.

    Article  Google Scholar 

  33. Tartar, A., Demarly, A., Sergheraert, C. and Escher, E., Metallocenic angiotensin II analogues, “Peptides ′83” V. Hruby (Ed) Pierce Corp., Rockford, III, 1984, pp. 377-380.

    Google Scholar 

  34. Hsieh, K.H., LaHann, T.R. and Speth, R.C., Topographic Probes of Angiotensin and Receptor: Potent Angiotensin II Agonist Containing Diphenylalanine and Long-Acting Antagonists Containing Bipheny-lalanine and 2-Indan Amino Acid in Position 8, J. Med. Chem. 32 (1989) 898–903.

    Article  PubMed  CAS  Google Scholar 

  35. Samanen, J., Narindray, D., Adams Jr, W., Cash, T., Yellin, T. and Regoli, D., Effects of D-Amino Acid Substitution on Antagonist Activities of Angiotensin II Analogues, J. Med. Chem. 31 (1988) 510–516.

    Article  PubMed  CAS  Google Scholar 

  36. Leukart, O., Caviezel, M., Eberie, A., Escher, E., Tun-Kyi, A. and Schwyzer, R., L-o-Carboranyl, a Boron Analogue of Phenylalanine, Helvetica Chimica Acta 59 (1976) 2184–2187.

    Article  Google Scholar 

  37. Hansch, C., Leo, A., Unger, S.H., Kim, K.H., Nikaitani, D. and Lien, E.J., “Aromatic” Substituent Constants for Structure-Activity Correlations, J. Med. Chem. 16 (1973) 1207–1216.

    Article  PubMed  CAS  Google Scholar 

  38. Holck, M., Bossé, R., Fischli, W., Gerold, H. and Escher, E., An Angiotensin II antagonist with strongly prolonged action, Biochem. Biophys. Res. Commun. 160 (1989) 1350–1356.

    Article  PubMed  CAS  Google Scholar 

  39. Bossé, R., Gerold, H., Fischli, W., Hoick, M. and Escher, E., An angiotensin antagonist with prolonged action and antihypertensive properties, J. Cardiovasc. Pharmacol. 16 (1990) S50–S55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pérodin, J. et al. (1996). Structure-Activity Relationship of the Agonist-Antagonist Transition on the Type 1 Angiotensin II Receptor; the Search for Inverse Agonists. In: Raizada, M.K., Phillips, M.I., Sumners, C. (eds) Recent Advances in Cellular and Molecular Aspects of Angiotensin Receptors. Advances in Experimental Medicine and Biology, vol 396. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1376-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1376-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1378-4

  • Online ISBN: 978-1-4899-1376-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics