Skip to main content

Serotonin and Ethanol Preference

  • Chapter
Recent Developments in Alcoholism

Part of the book series: Recent Developments in Alcoholism ((RDIA,volume 7))

Abstract

This chapter brings together evidence indicating the involvement of serotonin (5-HT) in ethanol preference using data mainly obtained from selectively bred alcohol-preferring and alcohol-nonpreferring lines of rodents. Although several laboratories have established rodent lines that will consume large quantities of ethanol daily, only one line thus far has been established that satisfied all the criteria for an animal model of alcoholism and that would be suitable for studying the biological basis of ethanol preference. This is the P line of alcohol-preferring rats that: (1) freely consumes 5–9 g ethanol/kg body wt/day; (2) drinks sufficient alcohol to produce intoxicating blood alcohol concentrations; (3) works to obtain alcohol; (4) self-administers ethanol for its CNS pharmacological effects; and (5) develops chronic tolerance to and dependence on alcohol with free-choice drinking. Relative to the NP line of alcohol-nonpreferring rats, the P rat has lower 5-HT levels in several CNS regions, including some, such as the nucleus accumbens, hypothalamus, and frontal cortex, which are involved in the brain reward circuitry. Furthermore, both acute and chronic ethanol administration have effects on the 5-HT pathway from the dorsal raphe nucleus to the nucleus accumbens in the P rat. Pharmacological studies have demonstrated that fluoxetine, a serotonin uptake inhibitor, reduced the oral consumption or intragastric self-administration of alcohol in the P rats. In addition, administration of a 5-HT1B agonist also attenuated the oral intake of ethanol by P rats. It is hypothesized that the serotonergic pathway from the dorsal raphe nucleus to the nucleus accumbens is involved in the reinforcing actions of alcohol in the P line of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Myers RD, Melchior CL: Alcohol and alcoholism: Role of serotonin, in Essman WB (ed): Serotonin in Health and Disease, Vol II. New York, Spectrum, 1977, p 373.

    Google Scholar 

  2. Cadoret RJ, Gath A: Inheritance of alcoholism in adoptees. Br J Psychiatry 132: 252–258, 1978.

    Google Scholar 

  3. Goodwin DW, Schulsinger F, Hermansen L, et al: Alcohol problems in adoptees raised apart from alcoholic biological parents. Arch Gen Psychiatry 28: 238–243, 1973.

    Article  PubMed  CAS  Google Scholar 

  4. Von Knorring A-L, Bohman M, Von Knorring L, et al: Platelet MAO activity as a biological marker in subgroups of alcoholism. Acta Psychiatr Scand 72: 51–58, 1985.

    Article  Google Scholar 

  5. Cicero TJ, Smithloff BR: Alcohol oral self-administration in rats: Attempts to elicit excessive intake and dependence, in Gross MM (ed): Alcohol Intoxication and Withdrawal, Vol 1. New York, Plenum Press, 1973, p 213.

    Chapter  Google Scholar 

  6. Lester D, Freed EX: Criteria for an animal model of alcoholism. Pharmacol Biochem Behav 1: 103–107, 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Cicero TJ: Animal models of alcoholism?, in Eriksson K, Sinclair JD, Kiianmaa K (eds): Animal Models in Alcohol Research. New York, Academic Press, 1980, p 99.

    Google Scholar 

  8. Deitrich RA, Melchior CL: A critical assessment of animal models for testing new drugs for altering ethanol intake, in Naranjo CA, Sellers EM (eds): Research Advances in New Psychophar-macological Treatments for Alcoholism. Amsterdam, Excerpta Medica, 1985, p 23.

    Google Scholar 

  9. Mardones J: Experimentally induced changes in the free selection of ethanol. Int Rev Neurobiol 2: 41–76, 1960.

    Article  PubMed  CAS  Google Scholar 

  10. Eriksson K: Genetic selection for voluntary alcohol consumption in the albino rat. Science 159: 739–741, 1968.

    Article  PubMed  CAS  Google Scholar 

  11. Lumeng L, Hawkins TD, Li T-K: New strains of rats with alcohol preference and nonpreference, in Thurman RG, Williamson JR, Drott H, et al (eds): Alcohol and Aldehyde Metabolizing Systems, Vol 3. New York, Academic Press, 1977, p 537.

    Google Scholar 

  12. Rogers DA, McClearn GE: Mouse strain differences in preference for various concentrations of alcohol. Q J Stud Alcohol 23: 26–33, 1962.

    Google Scholar 

  13. Eriksson K: Behavioral and physiological differences among rat strains specially selected for their alcohol consumption. Ann NY Acad Sci 197: 32–41, 1972.

    Article  PubMed  CAS  Google Scholar 

  14. Lundquist F: The metabolism of alcohol, in Israel Y, Mardones J (eds): Biological Basis of Alcoholism. New York, Wiley-Interscience, 1971, p 1.

    Google Scholar 

  15. Penn PE, McBride WJ, Lumeng L, et al: Neurochemical and operant behavioral studies of a strain of alcohol-preferring rats. Pharmacol Biochem Behav 8: 475–481, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Waller MB, McBride WJ, Gatto GJ, et al: Intragastric self-infusion of ethanol by ethanol-prefer-ring and-nonpreferring lines of rats. Science 225: 78–80, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Sinclair JD: Rats learning to work for alcohol. Nature 249: 590–592, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Elmer GI, Meisch RA, George FR: Oral ethanol reinforced behavior in inbred mice. Pharmacol Biochem Behav 24: 1417–1421, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Elmer GI, Meisch RA, George FR: Differential concentration-response curves for oral ethanol self-administration in C57BL/6J and BALB/cJ mice. Alcohol 4: 63–68, 1987.

    Article  PubMed  CAS  Google Scholar 

  20. Ritz MC, George FR, De Fiebre CM, et al: Genetic differences in the establishment of ethanol as a reinforcer. Pharmacol Biochem Behav 24: 1089–1094, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Murphy JM, Gatto GJ, Waller MB, et al: Effects of scheduled access on ethanol intake by the alcohol-preferring (P) line of rats. Alcohol 3: 331–336, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Waller MB, McBride WJ, Lumeng L, et al: Induction of dependence on ethanol by free-choice drinking in alcohol-preferring rats. Pharmacol Biochem Behav 16: 501–507, 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Gatto GJ, Murphy JM, Waller MB, et al: Chronic ethanol tolerance through free-choice drinking in the P line of alcohol-preferring rats. Pharmacol Biochem Behav 28: 111–115, 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Lumeng L, Li T-K: The development of metabolic tolerance in the alcohol-preferring P rats: Comparison of forced and free-choice drinking of ethanol. Pharmacol Biochem Behav 25: 1013–1020, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Tork I: Raphe nuclei and serotonin containing systems, in Paxinos G (ed): The Rat Nervous System, Vol 2. New York, Academic Press, 1985, p 43.

    Google Scholar 

  26. Moore RY: The anatomy of central serotonin neuron systems in the rat brain, in Jacobs BL, Gelperin A (eds): Serotonin Neurotransmission and Behavior. Cambridge, MA, MIT Press, 1981, p 35.

    Google Scholar 

  27. Descarries L, Watkins KC, Garcia S, et al: The serotonin neurons in nucleus raphe dorsalis of adult rat: A light and electron microscope radioautographic study. J Comp Neurol 207: 239–254, 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Wiklund L, Leger L, Persson M: Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indoleaminergic and locus coeruleus cell groups. J Comp Neurol 203: 613–647, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Steinbusch HWM, Nieuwenhuys R: The raphe nuclei of the rat brain stem: a cytoarchitectonic and immunohistochemical study, in Emson PC (ed): Chemical Neuroanatomy. New York, Raven Press, 1983, p 131.

    Google Scholar 

  30. Phillips AG: Brain reward circuitry: A case for separate systems. Brain Res Bull 12: 195–201, 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Aghajanian GK, Rosecrans JA, Sheard MH: Serotonin release in the forebrain by stimulation of midbrain raphe. Science 156: 402–403, 1967.

    Article  PubMed  CAS  Google Scholar 

  32. Curzon G, Fernando JCR, Marsden CA: 5-Hydroxytryptamine: The effects of impaired synthesis on its metabolism and release in rat. Br J Pharmacol 63: 627–634, 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Shannon NJ, Gunnet JW, Moore KE: A comparison of biochemical indices of 5-hydroxytryptaminergic neuronal activity following electrical stimulation of the dorsal raphe nucleus. J Neurochem 47: 958–965, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Crabbe JC, Belknap JK: Pharmacogenetic tools in the study of drug tolerance and dependence. Subst Alc Actions Misuse 1: 385–413, 1980.

    CAS  Google Scholar 

  35. Ho AKS, Tsai CS, Kissin B: Neurochemical correlates of alcohol preference in inbred strains of mice. Pharmacol Biochem Behav 3: 1073–1076, 1975.

    Article  PubMed  CAS  Google Scholar 

  36. Pickett RA, Collins AC: Use of genetic analysis to test the potential role of serotonin in alcohol preference. Life Sci 17: 1291–1296, 1975.

    Article  PubMed  CAS  Google Scholar 

  37. Ahtee L, Eriksson K: 5-Hydroxytryptamine and 5-hydroxyindolylacetic acid content in brain of rat strains selected for their alcohol intake. Physiol Behav 8: 123–126, 1972.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshimoto K, Komura S: Reexamination of the relationship between alcohol preference and brain monoamines in inbred strains of mice including senescence-accelerated mice. Pharmacol Biochem Behav 27: 317–322, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Murphy JM, McBride WJ, Lumeng L, et al: Regional brain levels of monoamines in alcohol-preferring and-nonpreferring lines of rats. Pharmacol Biochem Behav 16: 145–149, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Murphy JM, McBride WJ, Lumeng, L et al: Alcohol preference and regional brain monoamine contents of N/Nih heterogeneous stock rats. Alcohol Drug Res 7: 33–39, 1986.

    Google Scholar 

  41. Murphy JM, McBride WJ, Lumeng L, et al: Contents of monoamines in forebrain regions of alcohol-preferring (P) and-nonpreferring (NP) lines of rats. Pharmacol Biochem Behav 26: 389–392, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Lumeng L, Waller MB, McBride WJ, et al: Different sensitivities to ethanol in alcohol-preferring and-nonpreferring rats. Pharmacol Biochem Behav 16: 125–130, 1982.

    Article  PubMed  CAS  Google Scholar 

  43. Waller MB, Murphy JM, McBride WJ, et al: Effect of low dose ethanol on spontaneous motor activity in alcohol-preferring and-nonpreferring lines of rats. Pharmacol Biochem Behav 24: 617–623, 1986.

    Article  PubMed  CAS  Google Scholar 

  44. Waller MB, McBride WJ, Lumeng L, et al: Initial sensitivity and acute tolerance to ethanol in the P and NP lines of rats. Pharmacol Biochem Behav 19: 683–686, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Gatto GJ, Murphy JM, Waller MB, et al: Persistence of tolerance to a single dose of ethanol in the selectively-bred alcohol-preferring P rat. Pharmacol Biochem Behav 28: 105–110, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Li T-K, Lumeng L: Alcohol metabolism of inbred strains of rats with alcohol preference and nonpreference, in Thurman RG, Williamson JR, Drott H, et al (eds): Alcohol and Aldehyde Metabolizing Systems, Vol 3. New York, Academic Press, 1977, p 625.

    Google Scholar 

  47. Rusi M, Eriksson K, Maki J: Genetic differences in the susceptibility to acute ethanol intoxication in selected rat strains, in Gross MM (ed): Alcohol Intoxication and Withdrawal, Vol IIIa. New York, Plenum Press, 1977, p 97.

    Google Scholar 

  48. Nikander P, Pekkanen L: An inborn alcohol tolerance in alcohol-preferring rats. The lack of relationship between tolerance to ethanol and the brain microsomal (Na + K+) ATPasa activity. Psychopharmacology 51: 219–223, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Murphy JM, McBride WJ, Lumeng L, et al: Monoamine and metabolite levels in CNS regions of the P line of alcohol-preferring rats after acute and chronic ethanol treatment. Pharmacol Biochem Behav 19: 849–856, 1983.

    Article  PubMed  CAS  Google Scholar 

  50. Ahtee L, Eriksson K: Regional distribution of brain 5-hydroxytryptamine in rat strains selected for their alcohol intake. Ann NY Acad Sci 215: 126–134, 1973.

    Article  PubMed  CAS  Google Scholar 

  51. Murphy JM, McBride WJ, Gatto GJ, et al: Effects of acute ethanol administration on monoamine and metabolite content in forebrain regins of ethanol-tolerant and-nontolerant alcoholpreferrin (P) rats. Pharmacol Biochem Behav 29: 169–174, 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Rockman GR, Amit Z, Carr G, et al: Attenuation of ethanol intake by 5-hydroxytryptamine uptake blockade in laboratory rats. I. Involvement of brain 5-hydroxytryptamine in the mediation of the positive reinforcing properties of ethanol. Arch Int Pharmacodyn Ther 241: 245–259, 1979.

    PubMed  CAS  Google Scholar 

  53. Rockman GE, Amit Z, Carr G, et al: Attenuation of ethanol intake by 5-hydroxytryptamine uptake blockade in laboratory rats. II. Possible interaction with brain norepinephrine. Arch Int Pharmacodyn Ther 241: 260–265, 1979.

    PubMed  CAS  Google Scholar 

  54. Rockman GE, Amit Z, Brown ZW, et al: An investigation of the mechanisms of action of 5-hydroxytryptamine in the suppression of ethanol intake. Neuropharmacology 21: 341–347, 1982.

    Article  PubMed  CAS  Google Scholar 

  55. Amit Z, Sutherland EA, Gill K, et al: Zimeldine: A review of its effects on ethanol consumption. Neurosci Biobehav Rev 8: 35–54, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Naranjo CA, Sellers EM, Roach CA, et al: Zimelidine induced variations in alcohol intake by nondepressed heavy drinkers. Clin Pharmacol Ther 35: 374–381, 1984.

    Article  PubMed  CAS  Google Scholar 

  57. Daoust M, Saligaut C, Chadelaud M, et al: Attenuation by antidepressant drugs of alcohol intake in rats. Alcohol 1: 379–383, 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Lawrin MO, Naranjo CA, Sellers EM: Identification and testing of new drugs for modulating alcohol consumption. Psychopharmacol Bull 22: 1020–1025, 1986.

    CAS  Google Scholar 

  59. Murphy JM, Waller MB, Gatto GJ, et al: Monoamine uptake inhibitors attenuate ethanol intake in alcohol-preferring (P) rats. Alcohol 2: 349–352, 1985.

    Article  PubMed  CAS  Google Scholar 

  60. Sills MA, Wolfe BB, Frazer A: Determination of selective and non-selective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther 231: 480–486, 1984.

    PubMed  CAS  Google Scholar 

  61. Kiianmaa K: Alcohol intake in the rat after lowering brain 5-hydroxytryptamine content by electrolytic midbrain raphe lesions, 5,6-dihydroxytryptamine or p-chlorophenylalanine. Med Biol 54: 203–209, 1976.

    PubMed  CAS  Google Scholar 

  62. Wong DT, Bymaster FP, Horng JS, et al: A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. J Pharmacol Exp Ther 193: 804–811, 1975.

    PubMed  CAS  Google Scholar 

  63. Fuller RW, Perry KW, Molloy BB: Effect of 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine on the depletion of brain serotonin by 4-chloroamphetamine. J Pharmacol Exp Ther 193: 796–803, 1975.

    CAS  Google Scholar 

  64. Fuller RW, Wong DT: Inhibition of serotonin reuptake. Fed Proc 36: 2154–2158, 1977.

    PubMed  CAS  Google Scholar 

  65. Fuller RW, Snoddy HD: Fluoxetine enantiomers as antagonists of p-chloroamphetamine effects in rats. Pharmacol Biochem Behav 24: 281–284, 1986.

    Article  PubMed  CAS  Google Scholar 

  66. Guan X-M, McBride WJ: Selective action of fluoxetine on the extracellular pool of serotonin in the nucleus accumbens. Soc Neurosci Abstr 12: 428, 1986.

    Google Scholar 

  67. Peroutka SJ, Snyder SH: Multiple serotonin receptors and their physiological significance. Fed Proc 42: 213–217, 1983.

    PubMed  CAS  Google Scholar 

  68. Cohen ML, Fuller RW, Kruz KD: LY53857, a selective and potent serotonergic (5-HT2) receptor antagonist, does not lower blood pressure in the spontaneously hypertensive rat. J Pharmacol Exp Ther 227: 327–332, 1983.

    PubMed  CAS  Google Scholar 

  69. Wong DT, Lumeng L, Threlkeld PG, et al: Serotonergic and adrenergic receptors in alcohol-preferring and-nonpreferring rats. J Neural Transm 71: 207–218, 1988.

    Article  PubMed  CAS  Google Scholar 

  70. Wong DT, Reid LR, Bymaster FP, et al: Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors. J Neural Transm 64: 251–269, 1985.

    Article  PubMed  CAS  Google Scholar 

  71. Wise RA, Bozarth MA: Brain reward circuitry: Four circuit elements “wired” in apparent series. Brain Res Bull 12: 203–208, 1984.

    Article  PubMed  CAS  Google Scholar 

  72. Trulson ME, Frederickson CJ: A comparison of the electrophysiological and pharmacological properties of serotonin-containing neurons in the nucleus raphe dorsalis, raphe medianus and raphe pallidus recorded from mouse brain slices in vitro: role of autoreceptors. Brain Res Bull 18: 179–190, 1987.

    Article  PubMed  CAS  Google Scholar 

  73. Ronnback L, Zeuchner J, Rosengren L, et al: Decreased morphine intake by opiate addicted rats administered zimelidine, a 5-HT uptake inhibitor. Psychopharmacology 82: 30–35, 1984.

    Article  PubMed  CAS  Google Scholar 

  74. Ahtee L, Attila P, Lauhakangas V, et al: The fall of homovanillic acid and 5-hydroxyindoleacetic acid concentrations in brains of mice withdrawn from repeated morphine treatment and their restoration by acute morphine administration. J Neural Transm 68: 63–78, 1987.

    Article  PubMed  CAS  Google Scholar 

  75. Pohorecky LA: Biphasic action of ethanol. Biobehav Rev 1: 231–240, 1977.

    Article  CAS  Google Scholar 

  76. Gessa GL, Muntoni F, Collu M, et al: Low doses of ethanol activate dopaminegic neurons in the ventral tegmental area. Brain Res 348: 201–203, 1985.

    Article  PubMed  CAS  Google Scholar 

  77. Mereu G, Fadda F, Gessa GL: Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292: 63–69, 1984.

    Article  PubMed  CAS  Google Scholar 

  78. Chu N-S: Responses of midbrain raphe neurons to ethanol. Brain Res 311: 348–352, 1984.

    Article  PubMed  CAS  Google Scholar 

  79. Holman BR, Snape BM: Effects of ethanol on 5-hydroxytryptamine release from rat corpus striatum in vivo. Alcohol 2: 249–253, 1985.

    Article  PubMed  CAS  Google Scholar 

  80. Suzdak PD, Glowa JR, Crawley JN, et al: A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234: 1243–1247, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

McBride, W.J., Murphy, J.M., Lumeng, L., Li, TK. (1989). Serotonin and Ethanol Preference. In: Galanter, M. (eds) Recent Developments in Alcoholism. Recent Developments in Alcoholism, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1678-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1678-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1680-8

  • Online ISBN: 978-1-4899-1678-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics