Skip to main content

Laser Speckle Contrast Imaging to Measure Changes in Cerebral Blood Flow

  • Protocol
Cerebral Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1135))

Abstract

Laser speckle contrast imaging (LSCI) is a powerful tool capable of acquiring detailed maps of blood flow in arteries and veins on the cortical surface. Based on the blurring of laser speckle patterns by the motion of blood cells, LSCI can be combined with a variety of optical imaging preparations to acquire high-spatiotemporal resolution images of blood flow, and track changes in blood flow over time, using relatively simple instrumentation. Here, we describe methods for LSCI of cerebral blood flow via a thin skull imaging preparation in mice or rats. This preparation allows precise semiquantitative mapping of changes in blood flow over time using straightforward surgical protocols and equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebeskind DS (2003) Collateral circulation. Stroke 34:2279–2284

    Article  PubMed  Google Scholar 

  2. Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS (2011) Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 10:909–921

    Article  PubMed  Google Scholar 

  3. Parthasarathy AB, Tom WJ, Gopal A, Zhang X, Dunn AK (2008) Robust flow measurement with multi-exposure speckle imaging. Opt Express 16:1975–1989

    Article  PubMed  Google Scholar 

  4. Strong AJ, Bezzina EL, Anderson PJ, Boutelle MG, Hopwood SE, Dunn AK (2006) Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarisations. J Cereb Blood Flow Metab 26:645–653

    Article  PubMed  Google Scholar 

  5. Tom WJ, Ponticorvo A, Dunn AK (2008) Efficient processing of laser speckle contrast images. IEEE Trans Med Imaging 27:1728–1738

    Article  PubMed  Google Scholar 

  6. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109

    Article  PubMed Central  PubMed  Google Scholar 

  7. Duncan DD, Kirkpatrick SJ (2008) Can laser speckle flowmetry be made a quantitative tool? J Opt Soc Am A Opt Image Sci Vis 25:2088–2094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dunn AK (2012) Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng 40:367–377

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dunn AK, Devor A, Dale AM, Boas DA (2005) Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27:279–290

    Article  PubMed  Google Scholar 

  10. Armitage GA, Todd KG, Shuaib A, Winship IR (2010) Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke. J Cereb Blood Flow Metab 30:1432–1436

    Article  PubMed Central  PubMed  Google Scholar 

  11. Shin HK, Nishimura M, Jones PB, Ay H, Boas DA, Moskowitz MA, Ayata C (2008) Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke 39:1548–1555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5:e119

    Article  PubMed Central  PubMed  Google Scholar 

  13. Li P, Murphy TH (2008) Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. J Neurosci 28:11970–11979

    Article  CAS  PubMed  Google Scholar 

  14. Parthasarathy AB, Kazmi SM, Dunn AK (2010) Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomed Opt Express 1:246–259

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ayata C, Dunn AK, Gursoy-OZdemir Y, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755

    Article  PubMed  Google Scholar 

  16. Rege A, Seifert AC, Schlattman D, Ouyang Y, Li KW, Basaldella L, Brem H, Tyler BM, Thakor NV (2012) Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging. J Biomed Opt 17:126017

    Article  PubMed Central  PubMed  Google Scholar 

  17. Rege A, Thakor NV, Rhie K, Pathak AP (2012) In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 15:87–98

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rege A, Murari K, Seifert A, Pathak AP, Thakor NV (2011) Multiexposure laser speckle contrast imaging of the angiogenic microenvironment. J Biomed Opt 16:056006

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bonhoeffer T, Grinvald A (1996) In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, San Diego, pp 55–97

    Google Scholar 

  20. Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods 36:127–137

    Article  CAS  PubMed  Google Scholar 

  21. Sigler A, Goroshkov A, Murphy TH (2008) Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope. J Neurosci Methods 170:35–44

    Article  PubMed  Google Scholar 

  22. Ponticorvo A, Dunn AK (2010) How to build a Laser Speckle Contrast Imaging (LSCI) system to monitor blood flow. J Vis Exp (45). pii: 2004. doi: 10.3791/2004

  23. Harrison TC, Sigler A, Murphy TH (2009) Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging. J Neurosci Methods 182:211–218

    Article  PubMed  Google Scholar 

  24. Kirkpatrick SJ, Duncan DD, Wells-Gray EM (2008) Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt Lett 33:2886–2888

    Article  PubMed  Google Scholar 

  25. Thompson O, Andrews M, Hirst E (2011) Correction for spatial averaging in laser speckle contrast analysis. Biomed Opt Express 2:1021–1029

    Article  PubMed Central  PubMed  Google Scholar 

  26. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, San Diego

    Google Scholar 

  27. Drew PJ, Shih AY, Driscoll JD, Knutsen PM, Blinder P, Davalos D, Akassoglou K, Tsai PS, Kleinfeld D (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Yuan S, Devor A, Boas DA, Dunn AK (2005) Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl Opt 44:1823–1830

    Article  PubMed  Google Scholar 

  29. Duncan DD, Kirkpatrick SJ, Wang RK (2008) Statistics of local speckle contrast. J Opt Soc Am A Opt Image Sci Vis 25:9–15

    Article  PubMed  Google Scholar 

  30. Kirkpatrick SJ, Duncan DD, Wang RK, Hinds MT (2007) Quantitative temporal speckle contrast imaging for tissue mechanics. J Opt Soc Am A Opt Image Sci Vis 24:3728–3734

    Article  PubMed  Google Scholar 

  31. Li P, Ni S, Zhang L, Zeng S, Luo Q (2006) Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt Lett 31:1824–1826

    Article  PubMed  Google Scholar 

  32. Qiu J, Li P, Luo W, Wang J, Zhang H, Luo Q (2010) Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast. J Biomed Opt 15:016003

    Article  PubMed  Google Scholar 

  33. Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.W. is supported by Alberta Innovates Health Solutions, the Heart and Stroke Foundation of Canada, and the Canadian Institutes of Health Research. Thanks to Gomathi Ramakrishnan for assistance with the manuscript figures. Figures 1a and 2b are modified from Armitage et al. [10].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Winship, I.R. (2014). Laser Speckle Contrast Imaging to Measure Changes in Cerebral Blood Flow. In: Milner, R. (eds) Cerebral Angiogenesis. Methods in Molecular Biology, vol 1135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0320-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0320-7_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0319-1

  • Online ISBN: 978-1-4939-0320-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics