Skip to main content

Recent Advances in Riboflavin Biosynthesis

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

Riboflavin is biosynthesized from GTP and ribulose 5-phosphate. Whereas the early reactions conducing to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-phosphate show significant taxonomic variation, the subsequent reaction steps are universal in all taxonomic kingdoms. With the exception of a hitherto elusive phosphatase, all enzymes of the pathway have been characterized in some detail at the structural and mechanistic level. Some of the pathway enzymes (GTP cycloyhdrolase II, 3,4-dihydroxy-2-butanone 4-phosphate synthase, riboflavin synthase) have exceptionally complex reaction mechanisms. The commercial production of the vitamin is now entirely based on highly productive fermentation processes. Due to their absence in animals, the pathway enzymes are potential targets for the development of novel anti-infective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    PubMed  CAS  Google Scholar 

  2. Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    PubMed  CAS  Google Scholar 

  3. Sancar A (2008) Structure and function of photolyase and in vivo enzymology: 50th anniversary. J Biol Chem 283:32153–32157

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    PubMed  CAS  Google Scholar 

  5. Bacher A, Eberhardt S, Eisenreich W, Fischer M, Herz S, Illarionov B, Kis K, Richter G (2001) Biosynthesis of riboflavin. Vitam Horm 61:1–49

    PubMed  CAS  Google Scholar 

  6. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167

    PubMed  CAS  Google Scholar 

  7. Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350

    PubMed  CAS  Google Scholar 

  8. Fischer M, Bacher A (2006) Biosynthesis of vitamin B2 in plants. Physiol Plant 126:304–318

    CAS  Google Scholar 

  9. Fischer M, Bacher A (2011) Biosynthesis of vitamin B2 and flavocoenzymes in plants. Adv Bot Res 58:93–152

    CAS  Google Scholar 

  10. Fischer M, Bacher A (2011) Biosynthesis of vitamin B2: a unique way to assemble a xylene ring. Chembiochem 12:670–680

    PubMed  CAS  Google Scholar 

  11. Foor F, Brown GM (1975) Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. J Biol Chem 250:3545–3551

    PubMed  CAS  Google Scholar 

  12. Foor F, Brown GM (1980) GTP cyclohydrolase II from Escherichia coli. Methods Enzymol 66:303–307

    PubMed  CAS  Google Scholar 

  13. Ritz H, Schramek N, Bracher A, Herz S, Eisenreich W, Richter G, Bacher A (2001) Biosynthesis of riboflavin: studies on the mechanism of GTP cyclohydrolase II. J Biol Chem 276:22273–22277

    PubMed  CAS  Google Scholar 

  14. Ren J, Kotaka M, Lockyer M, Lamb HK, Hawkins AR, Stammers DK (2005) GTP cyclohydrolase II structure and mechanism. J Biol Chem 280:36912–36919

    PubMed  CAS  Google Scholar 

  15. Bracher A, Fischer M, Eisenreich W, Ritz H, Schramek N, Boyle P, Gentili P, Huber R, Nar H, Auerbach G, Bacher A (1999) Histidine 179 mutants of GTP cyclohydrolase I catalyze the formation of 2-amino-5-formylamino-6-ribofuranosylamino-4(3H)-pyrimidinone triphosphate. J Biol Chem 274:16727–16735

    PubMed  CAS  Google Scholar 

  16. Lehmann M, Degen S, Hohmann HP, Wyss M, Bacher A, Schramek N (2009) Biosynthesis of riboflavin. Screening for an improved GTP cyclohydrolase II mutant. FEBS J 276:4119–4129

    PubMed  CAS  Google Scholar 

  17. Graham DE, Xu H, White RH (2002) A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates. Biochemistry 41:15074–15084

    PubMed  CAS  Google Scholar 

  18. Morrison SD, Roberts SA, Zegeer AM, Montfort WR, Bandarian V (2008) A new use for a familiar fold: the X-ray crystal structure of GTP-bound GTP cyclohydrolase III from Methanocaldococcus jannaschii reveals a two metal ion catalytic mechanism. Biochemistry 47:230–242

    PubMed  CAS  Google Scholar 

  19. Grochowski LL, Xu H, White RH (2009) An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Biochemistry 48:4181–4188

    PubMed  CAS  Google Scholar 

  20. Kaiser J, Schramek N, Eberhardt S, Püttmer S, Schuster M, Bacher A (2002) Biosynthesis of vitamin B2. An essential zinc ion at the catalytic site of GTP cyclohydrolase II. Eur J Biochem 269:5264–5270

    PubMed  CAS  Google Scholar 

  21. Chatwell L, Krojer T, Fidler A, Romisch W, Eisenreich W, Bacher A, Huber R, Fischer M (2006) Biosynthesis of riboflavin: structure and properties of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate reductase of Methanocaldococcus jannaschii. J Mol Biol 359:1334–1351

    PubMed  CAS  Google Scholar 

  22. Chen SC, Chang YC, Lin CH, Liaw SH (2006) Crystal structure of a bifunctional deaminase and reductase from Bacillus subtilis involved in riboflavin biosynthesis. J Biol Chem 281:7605–7613

    PubMed  CAS  Google Scholar 

  23. Stenmark P, Moche M, Gurmu D, Nordlund P (2007) The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism. J Mol Biol 373:48–64

    PubMed  CAS  Google Scholar 

  24. Chen SC, Lin YH, Yu HC, Liaw SH (2009) Complex structure of Bacillus subtilis RibG: the reduction mechanism during riboflavin biosynthesis. J Biol Chem 284:1725–1731

    PubMed  CAS  Google Scholar 

  25. Yuan D, Wang Q, Gao W, Sheng F, Zhang Z, Lu Q, Cang H, Bi R (2007) Cloning, expression, purification, characterization, crystallization and X-ray diffraction of bifunctional pyrimidine deaminase/reductase from Shigella flexneri 2a. Protein Pept Lett 14:925–927

    PubMed  CAS  Google Scholar 

  26. Le Van Q, Keller PJ, Bown DH, Floss HG, Bacher A (1985) Biosynthesis of riboflavin in Bacillus subtilis: origin of the four-carbon moiety. J Bacteriol 162:1280–1284

    PubMed Central  PubMed  Google Scholar 

  27. Volk R, Bacher A (1990) Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. J Biol Chem 265:19479–19485

    PubMed  CAS  Google Scholar 

  28. Volk R, Bacher A (1991) Biosynthesis of riboflavin. Studies on the mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase. J Biol Chem 266:20610–20618

    PubMed  CAS  Google Scholar 

  29. Richter G, Volk R, Krieger C, Lahm HW, Rothlisberger U, Bacher A (1992) Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. J Bacteriol 174:4050–4056

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Richter G, Krieger C, Volk R, Kis K, Ritz H, Gotze E, Bacher A (1997) Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone-4-phosphate synthase. Methods Enzymol 280:374–382

    PubMed  CAS  Google Scholar 

  31. Goetze E, Kis K, Eisenreich W, Yamauchi N, Kakinuma K, Bacher A (1998) Biosynthesis of riboflavin. Stereochemistry of the 3,4-dihydroxy-2-butanone 4-phosphate synthase reaction. J Org Chem 63:6456–6457

    CAS  Google Scholar 

  32. Steinbacher S, Schiffmann S, Richter G, Huber R, Bacher A, Fischer M (2003) Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism. J Biol Chem 278:42256–42265

    PubMed  CAS  Google Scholar 

  33. Kis K, Volk R, Bacher A (1995) Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. Biochemistry 34:2883–2892

    PubMed  CAS  Google Scholar 

  34. Takahashi S, Kuzuyama T, Watanabe H, Seto H (1998) A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci U S A 95:9879–9884

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Lauw S, Illarionova V, Bacher A, Rohdich F, Eisenreich W (2008) Biosynthesis of isoprenoids: studies on the mechanism of 2C-methyl-D-erythritol-4-phosphate synthase. FEBS J 275:4060–4073

    PubMed  CAS  Google Scholar 

  36. Le Trong I, Stenkamp RE (2008) Alternative models for two crystal structures of Candida albicans 3,4-dihydroxy-2-butanone 4-phosphate synthase. Acta Crystallogr D Biol Crystallogr 64:219–220

    PubMed  Google Scholar 

  37. Kumar P, Singh M, Gautam R, Karthikeyan S (2010) Potential anti-bacterial drug target: structural characterization of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Salmonella typhimurium LT2. Proteins 78:3292–3303

    PubMed  CAS  Google Scholar 

  38. Echt S, Bauer S, Steinbacher S, Huber R, Bacher A, Fischer M (2004) Potential anti-infective targets in pathogenic yeasts: structure and properties of 3,4-dihydroxy-2-butanone 4-phosphate synthase of Candida albicans. J Mol Biol 341:1085–1096

    PubMed  CAS  Google Scholar 

  39. Liao DI, Zheng YJ, Viitanen PV, Jordan DB (2002) Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase. Biochemistry 41:1795–1806

    PubMed  CAS  Google Scholar 

  40. Liao DI, Wawrzak Z, Calabrese JC, Viitanen PV, Jordan DB (2001) Crystal structure of riboflavin synthase. Structure 9:399–408

    PubMed  CAS  Google Scholar 

  41. Steinbacher S, Schiffmann S, Bacher A, Fischer M (2004) Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate. Acta Crystallogr D Biol Crystallogr 60:1338–1340

    PubMed  Google Scholar 

  42. Kelly MJ, Ball LJ, Krieger C, Yu Y, Fischer M, Schiffmann S, Schmieder P, Kuhne R, Bermel W, Bacher A, Richter G, Oschkinat H (2001) The NMR structure of the 47-kDa dimeric enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase and ligand binding studies reveal the location of the active site. Proc Natl Acad Sci U S A 98:13025–13030

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Singh M, Kumar P, Karthikeyan S (2011) Structural basis for pH dependent monomer-dimer transition of 3,4-dihydroxy 2-butanone-4-phosphate synthase domain from Mycobacterium tuberculosis. J Struct Biol 174:374–384

    PubMed  CAS  Google Scholar 

  44. Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46:275–291

    PubMed  CAS  Google Scholar 

  45. Kannappan B, Gready JE (2008) Redefinition of rubisco carboxylase reaction reveals origin of water for hydration and new roles for active-site residues. J Am Chem Soc 130:15063–15080

    PubMed  Google Scholar 

  46. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71:576–599

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Wildman SG (2005) Along the trail from fraction I protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth Res 20:843–850

    CAS  Google Scholar 

  48. Braden BC, Velikovsky CA, Cauerhff AA, Polikarpov I, Goldbaum FA (2000) Divergence in macromolecular assembly: X-ray crystallographic structure analysis of lumazine synthase from Brucella abortus. J Mol Biol 297:1031–1036

    PubMed  CAS  Google Scholar 

  49. Gerhardt S, Haase I, Steinbacher S, Kaiser JT, Cushman M, Bacher A, Huber R, Fischer M (2002) The structural basis of riboflavin binding to Schizosaccharomyces pombe 6,7-dimethyl-8-ribityllumazine synthase. J Mol Biol 318:1317–1329

    PubMed  CAS  Google Scholar 

  50. Klinke S, Zylberman V, Bonomi HR, Haase I, Guimaraes BG, Braden BC, Bacher A, Fischer M, Goldbaum FA (2007) Structural and kinetic properties of lumazine synthase isoenzymes in the order Rhizobiales. J Mol Biol 373:664–680

    PubMed  CAS  Google Scholar 

  51. Klinke S, Zylberman V, Vega DR, Guimaraes BG, Braden BC, Goldbaum FA (2005) Crystallographic studies on decameric Brucella spp. lumazine synthase: a novel quaternary arrangement evolved for a new function? J Mol Biol 353:124–137

    PubMed  CAS  Google Scholar 

  52. Koch M, Breithaupt C, Gerhardt S, Haase I, Weber S, Cushman M, Huber R, Bacher A, Fischer M (2004) Structural basis of charge transfer complex formation by riboflavin bound to 6,7-dimethyl-8-ribityllumazine synthase. Eur J Biochem 271:3208–3214

    PubMed  CAS  Google Scholar 

  53. Kumar P, Singh M, Karthikeyan S (2011) Crystal structure analysis of icosahedral lumazine synthase from Salmonella typhimurium, an antibacterial drug target. Acta Crystallogr D Biol Crystallogr 67:131–139

    PubMed  CAS  Google Scholar 

  54. Meining W, Moertl S, Fischer M, Cushman M, Bacher A, Ladenstein R (2000) The atomic structure of pentameric lumazine synthase from Saccharomyces cerevisiae at 1.85 A resolution reveals the binding mode of a phosphonate intermediate analogue. J Mol Biol 299:181–197

    PubMed  CAS  Google Scholar 

  55. Morgunova E, Illarionov B, Saller S, Popov A, Sambaiah T, Bacher A, Cushman M, Fischer M, Ladenstein R (2010) Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis. Acta Crystallogr D Biol Crystallogr 66:1001–1011

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Morgunova E, Illarionov B, Sambaiah T, Haase I, Bacher A, Cushman M, Fischer M, Ladenstein R (2006) Structural and thermodynamic insights into the binding mode of five novel inhibitors of lumazine synthase from Mycobacterium tuberculosis. FEBS J 273:4790–4804

    PubMed  CAS  Google Scholar 

  57. Morgunova E, Meining W, Illarionov B, Haase I, Jin G, Bacher A, Cushman M, Fischer M, Ladenstein R (2005) Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. Biochemistry 44:2746–2758

    PubMed  CAS  Google Scholar 

  58. Morgunova E, Saller S, Haase I, Cushman M, Bacher A, Fischer M, Ladenstein R (2007) Lumazine synthase from Candida albicans as an anti-fungal target enzyme: structural and biochemical basis for drug design. J Biol Chem 282:17231–17241

    PubMed  CAS  Google Scholar 

  59. Persson K, Schneider G, Jordan DB, Viitanen PV, Sandalova T (1999) Crystal structure analysis of a pentameric fungal and an icosahedral plant lumazine synthase reveals the structural basis for differences in assembly. Protein Sci 8:2355–2365

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Ritsert K, Huber R, Turk D, Ladenstein R, Schmidt-Base K, Bacher A (1995) Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution. J Mol Biol 253:151–167

    PubMed  CAS  Google Scholar 

  61. Zhang X, Meining W, Cushman M, Haase I, Fischer M, Bacher A, Ladenstein R (2003) A structure-based model of the reaction catalyzed by lumazine synthase from Aquifex aeolicus. J Mol Biol 328:167–182

    PubMed  CAS  Google Scholar 

  62. Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R (2001) X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol 306:1099–1114

    PubMed  CAS  Google Scholar 

  63. Zhang Y, Illarionov B, Morgunova E, Jin G, Bacher A, Fischer M, Ladenstein R, Cushman M (2008) A new series of N-[2,4-dioxo-6-d-ribitylamino-1,2,3,4-tetrahydropyrimidin-5-yl]oxalamic acid derivatives as inhibitors of lumazine synthase and riboflavin synthase: design, synthesis, biochemical evaluation, crystallography, and mechanistic implications. J Org Chem 73:2715–2724

    PubMed  CAS  Google Scholar 

  64. Ladenstein R, Ritsert K, Huber R, Richter G, Bacher A (1994) The lumazine synthase/riboflavin synthase complex of Bacillus subtilis. X-ray structure analysis of hollow reconstituted beta-subunit capsids. Eur J Biochem 223:1007–1017

    PubMed  CAS  Google Scholar 

  65. Zhang X, Konarev PV, Petoukhov MV, Svergun DI, Xing L, Cheng RH, Haase I, Fischer M, Bacher A, Ladenstein R, Meining W (2006) Multiple assembly states of lumazine synthase: a model relating catalytic function and molecular assembly. J Mol Biol 362:753–770

    PubMed  CAS  Google Scholar 

  66. Ladenstein R, Schneider M, Huber R, Bartunik HD, Wilson K, Schott K, Bacher A (1988) Heavy riboflavin synthase from Bacillus subtilis. Crystal structure analysis of the icosahedral beta 60 capsid at 3.3 A resolution. J Mol Biol 203:1045–1070

    PubMed  CAS  Google Scholar 

  67. Schott K, Ladenstein R, Konig A, Bacher A (1990) The lumazine synthase-riboflavin synthase complex of Bacillus subtilis. Crystallization of reconstituted icosahedral beta-subunit capsids. J Biol Chem 265:12686–12689

    PubMed  CAS  Google Scholar 

  68. Fischer M, Schott AK, Romisch W, Ramsperger A, Augustin M, Fidler A, Bacher A, Richter G, Huber R, Eisenreich W (2004) Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. J Mol Biol 343:267–278

    PubMed  CAS  Google Scholar 

  69. Milne JL, Shi D, Rosenthal PB, Sunshine JS, Domingo GJ, Wu X, Brooks BR, Perham RN, Henderson R, Subramaniam S (2002) Molecular architecture and mechanism of an icosahedral pyruvate dehydrogenase complex: a multifunctional catalytic machine. EMBO J 21:5587–5598

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Beach RL, Plaut GW (1969) The formation of riboflavin from 6,7-dimethyl-8-ribityllumazine an acid media. Tetrahedron Lett 40:3489–3492

    PubMed  Google Scholar 

  71. Rowan T, Wood HC (1963) The biosynthesis of riboflavin. Proc Chem Soc 21–22

    Google Scholar 

  72. Rowan T, Wood HC (1968) The biosynthesis of pteridines. V. The synthesis of riboflavin from pteridine precursors. J Chem Soc Perkin 1(4):452–458

    Google Scholar 

  73. Illarionov B, Eisenreich W, Bacher A (2001) A pentacyclic reaction intermediate of riboflavin synthase. Proc Natl Acad Sci U S A 98:7224–7229

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Illarionov B, Haase I, Fischer M, Bacher A, Schramek N (2005) Pre-steady-state kinetic analysis of riboflavin synthase using a pentacyclic reaction intermediate as substrate. Biol Chem 386:127–136

    PubMed  CAS  Google Scholar 

  75. Ramsperger A, Augustin M, Schott AK, Gerhardt S, Krojer T, Eisenreich W, Illarionov B, Cushman M, Bacher A, Huber R, Fischer M (2006) Crystal structure of an archaeal pentameric riboflavin synthase in complex with a substrate analog inhibitor: stereochemical implications. J Biol Chem 281:1224–1232

    PubMed  CAS  Google Scholar 

  76. Fischer M, Romisch W, Illarionov B, Eisenreich W, Bacher A (2005) Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin. Biochem Soc Trans 33:780–784

    PubMed  CAS  Google Scholar 

  77. Plaut GWE (1971) Metabolism of water-soluble vitamins: the biosynthesis of riboflavin. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 21. Elsevier, Amsterdam, pp 11–45

    Google Scholar 

  78. Plaut GWE, Harvey RA (1971) The enzymatic synthesis of riboflavin. Methods Enzymol 18:515–538

    Google Scholar 

  79. Plaut GW, Smith CM, Alworth WL (1974) Biosynthesis of water-soluble vitamins. Annu Rev Biochem 43:899–922

    PubMed  CAS  Google Scholar 

  80. Plaut GW (1960) Studies on the stoichiometry of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem 235:41–42

    Google Scholar 

  81. Plaut GW (1963) Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem 238:2225–2243

    CAS  Google Scholar 

  82. Plaut GW, Beach RL (1976) Substrate specificity and stereospecific mode of action of riboflavin synthase. Flavins Flavoproteins. Proc Int Symp 5th 737–746.

    Google Scholar 

  83. Plaut GW, Beach RL, Aogaichi T (1970) Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. Biochemistry 9:771–785

    PubMed  CAS  Google Scholar 

  84. Paterson T, Wood HC (1972) Studies of the mechanism of riboflavin biosynthesis. J Chem Soc Perkin 1(8):1051–1056

    Google Scholar 

  85. Paterson T, Wood HCS (1969) Deuterium exchange of C7-methyl protons in 6,7-dimethyl-8-D-ribityllumazine, and studies of the mechanism of riboflavin biosynthesis. J Chem Soc Commun 290–291

    Google Scholar 

  86. Kim RR, Illarionov B, Joshi M, Cushman M, Lee CY, Eisenreich W, Fischer M, Bacher A (2010) Mechanistic insights on riboflavin synthase inspired by selective binding of the 6,7-dimethyl-8-ribityllumazine exomethylene anion. J Am Chem Soc 132:2983–2990

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Truffault V, Coles M, Diercks T, Abelmann K, Eberhardt S, Luttgen H, Bacher A, Kessler H (2001) The solution structure of the N-terminal domain of riboflavin synthase. J Mol Biol 309:949–960

    PubMed  CAS  Google Scholar 

  88. Gerhardt S, Schott AK, Kairies N, Cushman M, Illarionov B, Eisenreich W, Bacher A, Huber R, Steinbacher S, Fischer M (2002) Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. Structure 10:1371–1381

    PubMed  CAS  Google Scholar 

  89. Meining W, Eberhardt S, Bacher A, Ladenstein R (2003) The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6.A resolution. J Mol Biol 331:1053–1063

    PubMed  CAS  Google Scholar 

  90. Kis K, Bacher A (1995) Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis. J Biol Chem 270:16788–16795

    PubMed  CAS  Google Scholar 

  91. Seebeck FP, Woycechowsky KJ, Zhuang W, Rabe JP, Hilvert D (2006) A simple tagging system for protein encapsulation. J Am Chem Soc 128:4516–4517

    PubMed  CAS  Google Scholar 

  92. Woersdoerfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331:589–592

    CAS  Google Scholar 

  93. Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry 17:4583–4593

    PubMed  CAS  Google Scholar 

  94. Eker APM, Hessels JKC, van de Velde J (1988) Photoreactivating enzyme from the green alga Scenedesmus acutus. Evidence for the presence of two different flavin chromophores. Biochemistry 27:1758–1765

    CAS  Google Scholar 

  95. Glas AF, Maul MJ, Cryle M, Barends TR, Schneider S, Kaya E, Schlichting I, Carell T (2009) The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes. Proc Natl Acad Sci U S A 106:11540–11545

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Maul MJ, Barends TR, Glas AF, Cryle MJ, Domratcheva T, Schneider S, Schlichting I, Carell T (2008) Crystal structure and mechanism of a DNA (6-4) photolyase. Angew Chem Int Ed Engl 47:10076–10080

    PubMed  CAS  Google Scholar 

  97. Mueller M, Carell T (2009) Structural biology of DNA photolyases and cryptochromes. Curr Opin Struct Biol 19:277–285

    CAS  Google Scholar 

  98. Petersen JL, Ronan PJ (2010) Critical role of 7,8-didemethyl-8-hydroxy-5-deazariboflavin for photoreactivation in Chlamydomonas reinhardtii. J Biol Chem 285:32467–33275

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Eisenreich W, Schwarzkopf B, Bacher A (1991) Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. J Biol Chem 266:9622–9631

    PubMed  CAS  Google Scholar 

  100. Reuke B, Korn S, Eisenreich W, Bacher A (1992) Biosynthetic precursors of deazaflavins. J Bacteriol 174:4042–4049

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Graham DE, Xu H, White RH (2003) Identification of the 7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase required for coenzyme F(420) biosynthesis. Arch Microbiol 180:455–564

    PubMed  CAS  Google Scholar 

  102. Otani S, Takatsu M, Nakano M, Kasai S, Miura R (1974) Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 27:86–87

    CAS  Google Scholar 

  103. Matsui K, Juri N, Kubo Y, Kasai S (1979) Formation of roseoflavin from guanine through riboflavin. J Biochem 86:167–175

    PubMed  CAS  Google Scholar 

  104. Jankowitsch F, Kuhm C, Kellner R, Kalinowski J, Pelzer S, Macheroux P, Mack M (2011) A novel N, N-8-amino-8-demethyl-D-riboflavin Dimethyltransferase (RosA) catalyzing the two terminal steps of roseoflavin biosynthesis in Streptomyces davawensis. J Biol Chem 286:38275–38285

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Chatwell L, Illarionova V, Illarionov B, Eisenreich W, Huber R, Skerra A, Bacher A, Fischer M (2008) Structure of lumazine protein, an optical transponder of luminescent bacteria. J Mol Biol 382:44–55

    PubMed  CAS  Google Scholar 

  106. Lee J (1993) Lumazine protein and the excitation mechanism in bacterial bioluminescence. Biophys Chem 48:149–158

    PubMed  CAS  Google Scholar 

  107. Illarionov B, Eisenreich W, Wirth M, Yong Lee C, Eun Woo Y, Bacher A, Fischer M (2007) Lumazine proteins from photobacteria: localization of the single ligand binding site to the N-terminal domain. Biol Chem 388:1313–1323

    PubMed  CAS  Google Scholar 

  108. Illarionov B, Lee CY, Bacher A, Fischer M, Eisenreich W (2005) Random isotopolog libraries for protein perturbation studies. 13C NMR studies on lumazine protein of Photobacterium leiognathi. J Org Chem 70:9947–9954

    PubMed  CAS  Google Scholar 

  109. Ainciart N, Zylberman V, Craig PO, Nygaard D, Bonomi HR, Cauerhff AA, Goldbaum FA (2010) Sensing the dissociation of a polymeric enzyme by means of an engineered intrinsic probe. Proteins 79:1079–1088

    Google Scholar 

  110. Lalli M, Facey SJ, Hauer B (2011) Protein containers—promising tools for the future. Chem Bio Chem 12:1519–1521

    PubMed  CAS  Google Scholar 

  111. Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15:939–947

    PubMed  CAS  Google Scholar 

  112. Cushman M, Jin G, Sambaiah T, Illarionov B, Fischer M, Ladenstein R, Bacher A (2005) Design, synthesis, and biochemical evaluation of 1,5,6,7-tetrahydro-6,7-dioxo-9-D-ribitylaminolumazines bearing alkyl phosphate substituents as inhibitors of lumazine synthase and riboflavin synthase. J Org Chem 70:8162–8170

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Cushman M, Mavandadi F, Kugelbrey K, Bacher A (1998) Synthesis of 2,6-dioxo-(1H,3H)-9-N-ribitylpurine and 2,6-dioxo-(1H,3H)-8-aza-9-N-ribitylpurine as inhibitors of lumazine synthase and riboflavin synthase. Bioorg Med Chem 6:409–415

    PubMed  CAS  Google Scholar 

  114. Cushman M, Mavandadi F, Yang D, Kugelbrey K, Kis K, Bacher A (1999) Synthesis and biochemical evaluation of bis(6,7-dimethyl-8-D-ribityllumazines) as potential bisubstrate analogue inhibitors of riboflavin synthase. J Org Chem 64:4635–4642

    PubMed  CAS  Google Scholar 

  115. Cushman M, Yang D, Gerhardt S, Huber R, Fischer M, Kis K, Bacher A (2002) Design, synthesis, and evaluation of 6-carboxyalkyl and 6-phosphonoxyalkyl derivatives of 7-oxo-8-ribitylaminolumazines as inhibitors of riboflavin synthase and lumazine synthase. J Org Chem 67:5807–5816

    PubMed  CAS  Google Scholar 

  116. Cushman M, Yang D, Mihalic JT, Chen J, Gerhardt S, Huber R, Fischer M, Kis K, Bacher A (2002) Incorporation of an amide into 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors results in an unexpected reversal of selectivity for riboflavin synthase vs lumazine synthase. J Org Chem 67:6871–6877

    PubMed  CAS  Google Scholar 

  117. Chen J, Sambaiah T, Illarionov B, Fischer M, Bacher A, Cushman M (2004) Design, synthesis, and evaluation of acyclic C-nucleoside and N-methylated derivatives of the ribitylaminopyrimidine substrate of lumazine synthase as potential enzyme inhibitors and mechanistic probes. J Org Chem 69:6996–7003

    PubMed  CAS  Google Scholar 

  118. Cushman M, Sambaiah T, Jin G, Illarionov B, Fischer M, Bacher A (2004) Design, synthesis, and evaluation of 9-D-ribitylamino-1,3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and alpha, alpha-difluorophosphonate substituents as inhibitors of tiboflavin synthase and lumazine synthase. J Org Chem 69:601–612

    PubMed  CAS  Google Scholar 

  119. Chen J, Illarionov B, Bacher A, Fischer M, Haase I, Georg G, Ye QZ, Ma Z, Cushman M (2005) A high-throughput screen utilizing the fluorescence of riboflavin for identification of lumazine synthase inhibitors. Anal Biochem 338:124–130

    PubMed  CAS  Google Scholar 

  120. Talukdar A, Illarionov B, Bacher A, Fischer M, Cushman M (2007) Synthesis and enzyme inhibitory activity of the s-nucleoside analogue of the ribitylaminopyrimidine substrate of lumazine synthase and product of riboflavin synthase. J Org Chem 72:7167–7175

    PubMed  CAS  Google Scholar 

  121. Zhang Y, Jin G, Illarionov B, Bacher A, Fischer M, Cushman M (2007) A new series of 3-alkyl phosphate derivatives of 4,5,6,7-tetrahydro-1-D-ribityl-1H-pyrazolo[3,4-d]pyrimidinedione as inhibitors of lumazine synthase: design, synthesis, and evaluation. J Org Chem 72:7176–7184

    PubMed  CAS  Google Scholar 

  122. Talukdar A, Breen M, Bacher A, Illarionov B, Fischer M, Georg G, Ye QZ, Cushman M (2009) Discovery and development of a small molecule library with lumazine synthase inhibitory activity. J Org Chem 74:5123–5134

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Zhao Y, Bacher A, Illarionov B, Fischer M, Georg G, Ye QZ, Fanwick PE, Franzblau SG, Wan B, Cushman M (2009) Discovery and development of the covalent hydrates of trifluoromethylated pyrazoles as riboflavin synthase inhibitors with antibiotic activity against Mycobacterium tuberculosis. J Org Chem 74:5297–5303

    PubMed  CAS  Google Scholar 

  124. Talukdar A, Morgunova E, Duan J, Meining W, Foloppe N, Nilsson L, Bacher A, Illarionov B, Fischer M, Ladenstein R, Cushman M (2010) Virtual screening, selection and development of a benzindolone structural scaffold for inhibition of lumazine synthase. Bioorg Med Chem 18:3518–3534

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Zhang Y, Illarionov B, Bacher A, Fischer M, Georg GI, Ye QZ, Vander Velde D, Fanwick PE, Song Y, Cushman M (2007) A novel lumazine synthase inhibitor derived from oxidation of 1,3,6,8-tetrahydroxy-2,7-naphthyridine to a tetraazaperylenehexaone derivative. J Org Chem 72:2769–2776

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Park EY, Zhang JH, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J Appl Microbiol 103:468–476

    PubMed  CAS  Google Scholar 

  127. Yang Y, Wang L, Yin J, Wang X, Cheng S, Lang X, Qu H, Sun C, Wang J, Zhang R (2011) Immunoproteomic analysis of Brucella melitensis and identification of a new immunogenic candidate protein for the development of brucellosis subunit vaccine. Mol Immunol 49:175–184

    PubMed  CAS  Google Scholar 

  128. Bellido D, Craig PO, Mozgovoj MV, Gonzalez DD, Wigdorovitz A, Goldbaum FA, Dus Santos MJ (2009) Brucella spp. lumazine synthase as a bovine rotavirus antigen delivery system. Vaccine 27:136–145

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adelbert Bacher or Markus Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haase, I., Gräwert, T., Illarionov, B., Bacher, A., Fischer, M. (2014). Recent Advances in Riboflavin Biosynthesis. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics