Skip to main content

Identification of MicroRNA Targets by Pulsed SILAC

  • Protocol
  • First Online:
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Pulsed stable isotope labeling by amino acids in cell culture (pulsed SILAC or pSILAC) allows to monitor and quantify the de novo synthesis of proteins in an unbiased fashion on a proteome-wide scale. The high applicability of this metabolic labeling technique has been demonstrated for the identification of posttranscriptional changes in gene expression on the proteome level, in particular those caused by microRNAs. The application of pSILAC allows the selective quantification of newly synthesized proteins and thus the detection of differences in protein translation. This is of particular interest in the case of microRNA-mediated regulations, which characteristically cause rather modest decreases in protein amounts that may be difficult to detect by other proteomic methods. Here, we describe a detailed protocol for using pSILAC to track miRNA-mediated changes in protein expression, using the p53-induced miR-34a microRNA as a prototypic example of microRNA-mediated regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boisvert FM, Ahmad Y, Gierlinski M et al (2012) A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 11(M111):011429

    PubMed  Google Scholar 

  2. Huo Y, Iadevaia V, Yao Z et al (2012) Stable isotope-labelling analysis of the impact of inhibition of the mammalian target of rapamycin on protein synthesis. Biochem J 444:141–151

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Zhao H, Blagg BS, Dobrowsky RT (2012) C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. J Proteome Res 11:2581–2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Martin BR, Wang C, Adibekian A et al (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9:84–89

    Article  CAS  Google Scholar 

  5. Zee BM, Levin RS, Dimaggio PA, Garcia BA (2010) Global turnover of histone post-translational modifications and variants in human cells. Epigenetics Chromatin 3:22–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kraft-Terry SD, Gendelman HE (2011) Proteomic biosignatures for monocyte-macrophage differentiation. Cell Immunol 271:239–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kaller M, Liffers ST, Oeljeklaus S et al (2011) Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 10(M111):010462

    PubMed  Google Scholar 

  8. Maragkakis M, Alexiou P, Papadopoulos GL et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinform 10:295

    Article  Google Scholar 

  9. Patron JP, Fendler A, Bild M et al (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 7:e35345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schwanhausser B, Gossen M, Dittmar G et al (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209

    Article  PubMed  Google Scholar 

  11. Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  12. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  13. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  16. Baek D, Villen J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vinther J, Hedegaard MM, Gardner PP et al (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107

    Article  PubMed Central  PubMed  Google Scholar 

  18. Epanchintsev A, Jung P, Menssen A et al (2006) Inducible microRNA expression by an all-in-one episomal vector system. Nucleic Acids Res 34:e119

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626

    Article  CAS  PubMed  Google Scholar 

  20. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  21. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  22. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  23. Alexiou P, Maragkakis M, Papadopoulos GL et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25:3049–3055

    Article  CAS  PubMed  Google Scholar 

  24. Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134

    Article  CAS  PubMed  Google Scholar 

  25. Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  CAS  PubMed  Google Scholar 

  26. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nonne N, Ameyar-Zazoua M, Souidi M et al (2010) Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 38:e20

    Article  PubMed Central  PubMed  Google Scholar 

  31. Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165

    Article  CAS  PubMed  Google Scholar 

  32. Jackstadt R, Menssen A, Hermeking H (2013) Genome-wide analysis of c-MYC-regulated mRNAs and miRNAs, c-MYC DNA-binding by next generation sequencing. Methods Mol Biol 1012:145–185

    Article  CAS  PubMed  Google Scholar 

  33. Hünten S, Siemens H, Kaller M et al (2013) The p53/microRNA network in cancer: experimental and bioinformatics approaches. In: Schmitz U, Wolkenhauser O, Julio V (eds) miRNA cancer regulation: advanced concepts, bioinformatics and systems biology tools. Springer, New York, NY, pp 77–102

    Chapter  Google Scholar 

  34. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  CAS  PubMed  Google Scholar 

  35. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  37. Bornkamm GW, Berens C, Kuklik-Roos C et al (2005) Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33:e137

    Article  PubMed Central  PubMed  Google Scholar 

  38. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bettina Warscheid or Heiko Hermeking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kaller, M., Oeljeklaus, S., Warscheid, B., Hermeking, H. (2014). Identification of MicroRNA Targets by Pulsed SILAC. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics