Skip to main content

Perspectives in Glycomics and Lectin Engineering

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

This chapter would like to provide a short survey of the most promising concepts applied recently in analysis of glycoproteins based on lectins. The first part describes the most exciting analytical approaches used in the field of glycoprofiling based on integration of nanoparticles, nanowires, nanotubes, or nanochannels or using novel transducing platforms allowing to detect very low levels of glycoproteins in a label-free mode of operation. The second part describes application of recombinant lectins containing several tags applied for oriented and ordered immobilization of lectins. Besides already established concepts of glycoprofiling several novel aspects, which we think will be taken into account for future, more robust glycan analysis, are described including modified lectins, peptide lectin aptamers, and DNA aptamers with lectin-like specificity introduced by modified nucleotides. The last part of the chapter describes a novel concept of a glycocodon, which can lead to a better understanding of glycan–lectin interaction and for design of novel lectins with unknown specificities and/or better affinities toward glycan target or for rational design of peptide lectin aptamers or DNA aptamers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    PubMed  CAS  Google Scholar 

  2. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    PubMed  CAS  Google Scholar 

  4. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Gry M, Rimini R, Stromberg S, Asplund A, Ponten F, Uhlen M, Nilsson P (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10:365

    PubMed  PubMed Central  Google Scholar 

  6. Lee J-R, Magee DM, Gaster RS, LaBaer J, Wang SX (2013) Emerging protein array technologies for proteomics. Expert Rev Proteome 10:65–75

    CAS  Google Scholar 

  7. Arnaud J, Audfray A, Imberty A (2013) Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 42:4798–4813

    PubMed  CAS  Google Scholar 

  8. Baker JL, Çelik E, DeLisa MP (2013) Expanding the glycoengineering toolbox: the rise of bacterial N-linked protein glycosylation. Trends Biotechnol 31:313–323

    PubMed  CAS  Google Scholar 

  9. Bertók T, Katrlík J, Gemeiner P, Tkac J (2013) Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta 180:1–13

    Google Scholar 

  10. Varki A et al (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  11. Gemeiner P, Mislovicová D, Tkác J, Svitel J, Pätoprsty V, Hrabárová E, Kogan G, Kozár T (2009) Lectinomics II: a highway to biomedical/clinical diagnostics. Biotechnol Adv 27:1–15

    PubMed  CAS  Google Scholar 

  12. Katrlík J, Švitel J, Gemeiner P, Kožár T, Tkac J (2010) Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 30:394–418

    PubMed  Google Scholar 

  13. Krishnamoorthy L, Bess JW, Preston AB, Nagashima K, Mahal LK (2009) HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin. Nat Chem Biol 5:244–250

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Schauer R, Kamerling JP (2011) The chemistry and biology of trypanosomal trans-sialidases: virulence factors in chagas disease and sleeping sickness. ChemBioChem 12:2246–2264

    PubMed  CAS  Google Scholar 

  15. Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H, Zhao C, Molinaro RJ, Cummings RD, Smith DF (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8:85–90

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin regIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Burton DR, Poignard P, Stanfield RL, Wilson IA (2012) Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337:183–186

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P-S, Wang S-K, Stanfield RL, Julien J-P, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong C-H, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Kim J-H, Resende R, Wennekes T, Chen H-M, Bance N, Buchini S, Watts AG, Pilling P, Streltsov VA, Petric M, Liggins R, Barrett S, McKimm-Breschkin JL, Niikura M, Withers SG (2013) Mechanism-based covalent neuraminidase inhibitors with broad-spectrum influenza antiviral activity. Science 340:71–75

    PubMed  CAS  Google Scholar 

  20. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S, Mouquet H, Spatz LA, Diskin R, Abadir A, Zang T, Dorner M, Billerbeck E, Labitt RN, Gaebler C, Marcovecchio PM, Incesu R-B, Eisenreich TR, Bieniasz PD, Seaman MS, Bjorkman PJ, Ravetch JV, Ploss A, Nussenzweig MC (2012) HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492:118–122

    PubMed  CAS  Google Scholar 

  21. Chandler KB, Goldman R (2013) Glycoprotein disease markers and single protein-omics. Mol Cell Proteomics 12:836–845

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Ferens-Sieczkowska M, Kowalska B, Kratz EM (2013) Seminal plasma glycoproteins in male infertility and prostate diseases: is there a chance for glyco-biomarkers? Biomarkers 18:10–22

    PubMed  CAS  Google Scholar 

  23. Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O'Kennedy RJ (2013) Aberrant PSA glycosylation – a sweet predictor of prostate cancer. Nat Rev Urol 10:99–107

    PubMed  CAS  Google Scholar 

  24. Schmaltz RM, Hanson SR, Wong C-H (2011) Enzymes in the synthesis of glycoconjugates. Chem Rev 111:4259–4307

    PubMed  CAS  Google Scholar 

  25. van Bueren JJL, Rispens T, Verploegen S, van der Palen-Merkus T, Stapel S, Workman LJ, James H, van Berkel PHC, van de Winkel JGJ, Platts-Mills TAE, Parren PWHI (2011) Anti-galactose-[alpha]-1,3-galactose ige from allergic patients does not bind [alpha]-galactosylated glycans on intact therapeutic antibody fc domains. Nat Biotechnol 29:574–576

    Google Scholar 

  26. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab: a triumph for glyco-engineering. MAbs 4:419–425

    PubMed  PubMed Central  Google Scholar 

  27. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure–function relationships of glycans. Nat Methods 2:817–824

    PubMed  CAS  Google Scholar 

  28. Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    PubMed  CAS  Google Scholar 

  29. Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol Biosyst 5:1087–1104

    PubMed  CAS  Google Scholar 

  30. Reuel NF, Mu B, Zhang J, Hinckley A, Strano MS (2012) Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. Chem Soc Rev 41:5744–5779

    PubMed  CAS  Google Scholar 

  31. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291:2357–2364

    PubMed  CAS  Google Scholar 

  32. Furukawa JI, Fujitani N, Shinohara Y (2013) Recent advances in cellular glycomic analyses. Biomolecules 3:198–225

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Rakus JF, Mahal LK (2011) New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu Rev Anal Chem 4:367–392

    CAS  Google Scholar 

  34. Smith DF, Cummings RD (2013) Application of microarrays to deciphering the structure and function of the human glycome. Mol Cell Proteomics 12:902–912

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Alley WR, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113:2668–2732

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Lazar IM, Lee W, Lazar AC (2013) Glycoproteomics on the rise: established methods, advanced techniques, sophisticated biological applications. Electrophoresis 34:113–125

    PubMed  CAS  Google Scholar 

  37. Novotny M, Alley W Jr, Mann B (2013) Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj J 30:89–117

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Oliveira C, Teixeira JA, Domingues L (2013) Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools. Crit Rev Biotechnol 33:66–80

    PubMed  CAS  Google Scholar 

  39. Murphy P, André S, Gabius H-J (2013) The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 18:4026–4053

    CAS  Google Scholar 

  40. Mislovičová D, Katrlík J, Paulovičová E, Gemeiner P, Tkac J (2012) Comparison of three distinct ella protocols for determination of apparent affinity constants between con a and glycoproteins. Colloids Surf B Biointerfaces 94:163–169

    PubMed  Google Scholar 

  41. Mislovičová D, Gemeiner P, Kozarova A, Kožár T (2009) Lectinomics i. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia 64:1–19

    Google Scholar 

  42. Hirabayashi J, Yamada M, Kuno A, Tateno H (2013) Lectin microarrays: concept, principle and applications. Chem Soc Rev 42:4443–4458

    PubMed  CAS  Google Scholar 

  43. Krishnamoorthy L, Mahal LK (2009) Glycomic analysis: an array of technologies. ACS Chem Biol 4:715–732

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    PubMed  CAS  Google Scholar 

  45. Cunningham S, Gerlach JQ, Kane M, Joshi L (2010) Glyco-biosensors: recent advances and applications for the detection of free and bound carbohydrates. Analyst 135:2471–2480

    PubMed  CAS  Google Scholar 

  46. Gerlach JQ, Cunningham S, Kane M, Joshi L (2010) Glycobiomimics and glycobiosensors. Biochem Soc Trans 38:1333–1336

    PubMed  CAS  Google Scholar 

  47. Reuel NF, Ahn J-H, Kim J-H, Zhang J, Boghossian AA, Mahal LK, Strano MS (2011) Transduction of glycan–lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. J Am Chem Soc 133:17923–17933

    PubMed  CAS  Google Scholar 

  48. Sanchez-Pomales G, Zangmeister RA (2011) Recent advances in electrochemical glycobiosensing. Int J Electrochem 2011

    Google Scholar 

  49. Tkac J, Davis JJ (2009) Label-free field effect protein sensing. In: Davis JJ (ed) Engineering the bioelectronic interface: applications to analyte biosensing and protein detection. Royal Society of Chemistry, Cambridge, pp 193–224, doi:10.1039/9781847559777

    Google Scholar 

  50. Reichardt NC, Martin-Lomas M, Penades S (2013) Glyconanotechnology. Chem Soc Rev 42:4358–4376

    PubMed  CAS  Google Scholar 

  51. Zeng X, Andrade CAS, Oliveira MDL, Sun X-L (2012) Carbohydrate–protein interactions and their biosensing applications. Anal Bioanal Chem 402:3161–3176

    PubMed  CAS  Google Scholar 

  52. Gruber K, Horlacher T, Castelli R, Mader A, Seeberger PH, Hermann BA (2011) Cantilever array sensors detect specific carbohydrate-protein interactions with picomolar sensitivity. ACS Nano 5:3670–3678

    PubMed  CAS  Google Scholar 

  53. Mader A, Gruber K, Castelli R, Hermann BA, Seeberger PH, Radler JO, Leisner M (2012) Discrimination of escherichia coli strains using glycan cantilever array sensors. Nano Lett 12:420–423

    PubMed  CAS  Google Scholar 

  54. Jelinek R, Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104:5987–6015

    PubMed  CAS  Google Scholar 

  55. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42:5944–5962

    PubMed  CAS  Google Scholar 

  56. La Belle JT, Gerlach JQ, Svarovsky S, Joshi L (2007) Label-free impedimetric detection of glycan–lectin interactions. Anal Chem 79:6959–6964

    PubMed  Google Scholar 

  57. Oliveira MDL, Correia MTS, Coelho LCBB, Diniz FB (2008) Electrochemical evaluation of lectin–sugar interaction on gold electrode modified with colloidal gold and polyvinyl butyral. Colloids Surf B Biointerfaces 66:13–19

    PubMed  CAS  Google Scholar 

  58. Nagaraj VJ, Aithal S, Eaton S, Bothara M, Wiktor P, Prasad S (2010) Nanomonitor: a miniature electronic biosensor for glycan biomarker detection. Nanomedicine 5:369–378

    PubMed  CAS  Google Scholar 

  59. Bertok T, Gemeiner P, Mikula M, Gemeiner P, Tkac J (2013) Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid. Microchim Acta 180:151–159

    CAS  Google Scholar 

  60. Bertok T, Klukova L, Sediva A, Kasák P, Semak V, Micusik M, Omastova M, Chovanová L, Vlček M, Imrich R, Vikartovska A, Tkac J (2013) Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Anal Chem 85:7324–7332

    PubMed  CAS  Google Scholar 

  61. Bertok T, Sediva A, Katrlik J, Gemeiner P, Mikula M, Nosko M, Tkac J (2013) Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta 108:11–18

    PubMed  CAS  Google Scholar 

  62. Yang H, Li Z, Wei X, Huang R, Qi H, Gao Q, Li C, Zhang C (2013) Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes. Talanta 111:62–68

    PubMed  CAS  Google Scholar 

  63. Vedala H, Chen Y, Cecioni S, Imberty A, Vidal S, Star A (2011) Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. Nano Lett 11:170–175

    PubMed  CAS  Google Scholar 

  64. Chen YN, Vedala H, Kotchey GP, Audfray A, Cecioni S, Imberty A, Vidal S, Star A (2012) Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes. ACS Nano 6:760–770

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Zhang GJ, Huang MJ, Ang JJ, Yao QF, Ning Y (2013) Label-free detection of carbohydrate-protein interactions using nanoscale field-effect transistor biosensors. Anal Chem 85:4392–4397

    PubMed  CAS  Google Scholar 

  66. Huang Y-W, Wu C-S, Chuang C-K, Pang S-T, Pan T-M, Yang Y-S, Ko F-H (2013) Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem 85:7912–7918

    PubMed  CAS  Google Scholar 

  67. Ali M, Nasir S, Ramirez P, Cervera J, Mafe S, Ensinger W (2013) Carbohydrate-mediated biomolecular recognition and gating of synthetic ion channels. J Phys Chem C 117:18234–18242

    CAS  Google Scholar 

  68. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev. doi:10.1016/j.addr.2013.07.015

    PubMed  Google Scholar 

  69. Reuel NF, Grassbaugh B, Kruss S, Mundy JZ, Opel C, Ogunniyi AO, Egodage K, Wahl R, Helk B, Zhang J, Kalcioglu ZI, Tvrdy K, Bellisario DO, Mu B, Blake SS, Van Vliet KJ, Love JC, Wittrup KD, Strano MS (2013) Emergent properties of nanosensor arrays: applications for monitoring igg affinity distributions, weakly affined hypermannosylation, and colony selection for biomanufacturing. ACS Nano 7:7472–7482

    PubMed  CAS  Google Scholar 

  70. Bellapadrona G, Tesler AB, Grunstein D, Hossain LH, Kikkeri R, Seeberger PH, Vaskevich A, Rubinstein I (2012) Optimization of localized surface plasmon resonance transducers for studying carbohydrate-protein interactions. Anal Chem 84:232–240

    PubMed  CAS  Google Scholar 

  71. Jin S, Cheng Y, Reid S, Li M, Wang B (2010) Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev 30:171–257

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Streicher H, Sharon N (2003) Recombinant plant lectins and their mutants. Methods Enzymol 363:47–77, In: Yuan CL, Reiko TL (eds) doi:10.1016/S0076-6879(03)01043-7

    PubMed  CAS  Google Scholar 

  73. Geisler C, Jarvis DL (2011) Letter to the glyco-forum: effective glycoanalysis with maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 21:988–993

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Alava T, Mann JA, Théodore C, Benitez JJ, Dichtel WR, Parpia JM, Craighead HG (2013) Control of the graphene–protein interface is required to preserve adsorbed protein function. Anal Chem 85:2754–2759

    PubMed  CAS  Google Scholar 

  75. Hsu K-L, Gildersleeve JC, Mahal LK (2008) A simple strategy for the creation of a recombinant lectin microarray. Mol Biosyst 4:654–662

    PubMed  CAS  Google Scholar 

  76. Propheter DC, Hsu K-L, Mahal LK (2010) Fabrication of an oriented lectin microarray. ChemBioChem 11:1203–1207

    PubMed  CAS  Google Scholar 

  77. Propheter DC, Mahal LK (2011) Orientation of gst-tagged lectins via in situ surface modification to create an expanded lectin microarray for glycomic analysis. Mol Biosyst 7:2114–2117

    PubMed  CAS  Google Scholar 

  78. Chen M-L, Adak AK, Yeh N-C, Yang W-B, Chuang Y-J, Wong C-H, Hwang K-C, Hwu J-RR, Hsieh S-L, Lin C-C (2008) Fabrication of an oriented fc-fused lectin microarray through boronate formation. Angew Chem Int Ed 47:8627–8630

    CAS  Google Scholar 

  79. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–550

    PubMed  CAS  Google Scholar 

  80. Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51:1316–1332

    CAS  Google Scholar 

  81. Ruigrok VJB, Levisson M, Eppink MHM, Smidt H, van der Oost J (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13

    PubMed  CAS  Google Scholar 

  82. Ståhl S, Kronqvist N, Jonsson A, Löfblom J (2013) Affinity proteins and their generation. J Chem Technol Biotechnol 88:25–38

    Google Scholar 

  83. Woodman R, Yeh JTH, Laurenson S, Ferrigno PK (2005) Design and validation of a neutral protein scaffold for the presentation of peptide aptamers. J Mol Biol 352:1118–1133

    PubMed  CAS  Google Scholar 

  84. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13:245–255

    PubMed  CAS  Google Scholar 

  85. Davis JJ, Tkac J, Humphreys R, Buxton AT, Lee TA, Ko Ferrigno P (2009) Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms. Anal Chem 81:3314–3320

    PubMed  CAS  Google Scholar 

  86. Davis JJ, Tkac J, Laurenson S, Ferrigno PK (2007) Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Anal Chem 79:1089–1096

    PubMed  CAS  Google Scholar 

  87. Stadler LKJ, Hoffmann T, Tomlinson DC, Song QF, Lee T, Busby M, Nyathi Y, Gendra E, Tiede C, Flanagan K, Cockell SJ, Wipat A, Harwood C, Wagner SD, Knowles MA, Davis JJ, Keegan N, Ferrigno PK (2011) Structurefunction studies of an engineered scaffold protein derived from stefin A. II: development and applications of the sqt variant. Protein Eng Des Sel 24:751–763

    PubMed  CAS  Google Scholar 

  88. Koide A, Gilbreth RN, Esaki K, Tereshko V, Koide S (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci 104:6632–6637

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Ellington AD, Szostak JW (1990) In vitro selection of rna molecules that bind specific ligands. Nature 346:818–822

    PubMed  CAS  Google Scholar 

  90. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    PubMed  CAS  Google Scholar 

  91. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Tolle F, Mayer G (2013) Dressed for success – applying chemistry to modulate aptamer functionality. Chem Sci 4:60–67

    CAS  Google Scholar 

  94. Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B (2008) Selecting aptamers for a glycoprotein through the incorporation of the boronic acid moiety. J Am Chem Soc 130:12636–12638

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132:4141–4151

    PubMed  CAS  Google Scholar 

  96. Eckstrum K, Bany B (2011) Tumor necrosis factor receptor subfamily 9 (tnfrsf9) gene is expressed in distinct cell populations in mouse uterus and conceptus during implantation period of pregnancy. Cell Tissue Res 344:567–576

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Kimoto M, Yamashige R, Matsunaga K-I, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    PubMed  CAS  Google Scholar 

  98. Cao Z, Partyka K, McDonald M, Brouhard E, Hincapie M, Brand RE, Hancock WS, Haab BB (2013) Modulation of glycan detection on specific glycoproteins by lectin multimerization. Anal Chem 85:1689–1698

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Lu Y-W, Chien C-W, Lin P-C, Huang L-D, Chen C-Y, Wu S-W, Han C-L, Khoo K-H, Lin C-C, Chen Y-J (2013) Bad-lectins: boronic acid-decorated lectins with enhanced binding affinity for the selective enrichment of glycoproteins. Anal Chem 85:8268–8276

    PubMed  CAS  Google Scholar 

  100. McDonald RE, Hughes DJ, Davis BG (2004) Modular control of lectin function: redox-switchable agglutination. Angew Chem Int Ed 43:3025–3029

    CAS  Google Scholar 

  101. Eigen M, Schuster P (1978) The hypercycle. Naturwissenschaften 65:341–369

    CAS  Google Scholar 

  102. Ikehara K, Omori Y, Arai R, Hirose A (2002) A novel theory on the origin of the genetic code: a gnc-sns hypothesis. J Mol Evol 54:530–538

    PubMed  CAS  Google Scholar 

  103. Ikehara K (2005) Possible steps to the emergence of life: the [GADV]-protein world hypothesis. Chem Rec 5:107–118

    PubMed  CAS  Google Scholar 

  104. Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:1–21

    Google Scholar 

  105. Lehmann J, Cibils M, Libchaber A (2009) Emergence of a code in the polymerization of amino acids along RNA templates. PLOS ONE 4

    Google Scholar 

  106. Yarus M, Widmann J, Knight R (2009) RNA–amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429

    PubMed  CAS  Google Scholar 

  107. Nahalka J (2011) Quantification of peptide bond types in human proteome indicates how DNA codons were assembled at prebiotic conditions. J Proteome Bioinf 4:153–159

    CAS  Google Scholar 

  108. Nahalka J (2012) Glycocodon theory—the first table of glycocodons. J Theor Biol 307:193–204

    PubMed  CAS  Google Scholar 

  109. Wacker M, Feldman MF, Callewaert N, Kowarik M, Clarke BR, Pohl NL, Hernandez M, Vines ED, Valvano MA, Whitfield C, Aebi M (2006) Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci 103:7088–7093

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Li L, Woodward R, Ding Y, Liu X-W, Yi W, Bhatt VS, Chen M, Zhang L-W, Wang PG (2010) Overexpression and topology of bacterial oligosaccharyltransferase pglb. Biochem Biophys Res Commun 394:1069–1074

    PubMed  CAS  Google Scholar 

  111. Schwarz F, Huang W, Li C, Schulz BL, Lizak C, Palumbo A, Numao S, Neri D, Aebi M, Wang L-X (2010) A combined method for producing homogeneous glycoproteins with eukaryotic n-glycosylation. Nat Chem Biol 6:264–266

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

The financial support from the Slovak research and development agency APVV 0282-11, from VEGA 2/0127/10 and 2/0162/14 is acknowledged. The research leading to these results has received partly funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 311532, from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant agreement n. 317420 and from Qatar Foundation under Project n. 6-381-1-078. This contribution was partly supported by the project: Centre of excellence for white-green biotechnology, ITMS 26220120054, supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gemeiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tkac, J., Bertok, T., Nahalka, J., Gemeiner, P. (2014). Perspectives in Glycomics and Lectin Engineering. In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_37

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics