Skip to main content

The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling

  • Protocol
  • First Online:
Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1220))

Abstract

Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeffer JM et al (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–H1414

    CAS  PubMed  Google Scholar 

  2. Grossman W et al (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Fed Proc 40:2037–2041

    CAS  PubMed  Google Scholar 

  4. Robinson TF et al (1988) Structure and function of connective tissue in cardiac muscle: collagen types I and III in endomysial struts and pericellular fibers. Scanning Microsc 2:1005–1015

    CAS  PubMed  Google Scholar 

  5. Montfort I, Perez-Tamayo R (1975) The distribution of collagenase in normal rat tissues. J Histochem Cytochem 23:910–920

    Article  CAS  PubMed  Google Scholar 

  6. Lees M et al (1994) Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem 223:171–177

    Article  CAS  PubMed  Google Scholar 

  7. Marone G et al (1999) Immunological modulation of human cardiac mast cells. Neurochem Res 24:1195–1202

    Article  CAS  PubMed  Google Scholar 

  8. Metcalfe DD (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  9. Frangogiannis NG et al (1998) Resident cardiac mast cells degranulate and release preformed TNF-α, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki K et al (1995) Activation of precursors for matrix metalloproteinases 1 (interstitial collagenase) and 3 (stromelysin) by rat mast-cell proteinases I and II. Biochem J 305(Pt 1):301–306

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Brower GL et al (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol 283:H518–H525

    CAS  Google Scholar 

  12. Patella V et al (1997) Increased cardiac mast cell density and mediator release in patients with dilated cardiomyopathy. Inflamm Res 46:S31–S32

    Article  CAS  PubMed  Google Scholar 

  13. Patella V et al (1998) Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 97:971–978

    Article  CAS  PubMed  Google Scholar 

  14. Shiota N et al (2003) A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens 21:1823–1825

    Article  Google Scholar 

  15. Panizo A et al (1995) Are mast cells involved in hypertensive heart disease? J Hypertens 13:1201–1208

    Article  CAS  PubMed  Google Scholar 

  16. Olivetti G et al (1989) Long-term pressure-induced cardiac hypertrophy: capillary and mast cell proliferation. Am J Physiol Heart Circ Physiol 257:H1766–H1772

    CAS  Google Scholar 

  17. Engels W et al (1995) Transmural changes in mast cell density in rat heart after infarct induction in vivo. J Pathol 177:423–429

    Article  CAS  PubMed  Google Scholar 

  18. Dell’Italia LJ et al (1997) Volume-overload cardiac hypertrophy is unaffected by ACE inhibitor treatment in dogs. Am J Physiol Heart Circ Physiol 273:H961–H970

    Google Scholar 

  19. Stewart JA et al (2003) Cardiac mast cell- and chymase-mediated matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J Mol Cell Cardiol 35:311–319

    Article  CAS  PubMed  Google Scholar 

  20. von Recklinghausen FD (1863) Uber eiter- und bindegewebskorperchen. Virchows Arch Pathol Anat Physiol Klin Med 28:157–197

    Article  Google Scholar 

  21. Crivellato E et al (2003) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123:19–21

    Article  PubMed  Google Scholar 

  22. Estensen RD (1984) Eosinophilic myocarditis: a role for mast cells? Arch Pathol Lab Med 108:358–359

    CAS  PubMed  Google Scholar 

  23. Fernex M (1968) In: The mast-cell system: its relationship to atherosclerosis, fibrosis and eosinophils. The Williams & Wilkins Company, Baltimore, pp 93–95

    Google Scholar 

  24. Dvorak AM (1986) Mast-cell degranulation in human hearts. N Engl J Med 315:969–970

    CAS  PubMed  Google Scholar 

  25. Li QY et al (1992) The relationship of mast cells and their secreted products to the volume of fibrosis in posttransplant hearts. Transplantation 53:1047–1051

    Article  CAS  PubMed  Google Scholar 

  26. Kovanen PT (1995) Role of mast cells in atherosclerosis. Chem Immunol 62:132–170

    Article  CAS  PubMed  Google Scholar 

  27. Hara M et al (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bhattacharya K et al (2007) Mast cell deficient W/Wv mice have lower serum IL-6 and less cardiac tissue necrosis than their normal littermates following myocardial ischemia-reperfusion. Int J Immunopathol Pharmacol 20:69–74

    CAS  PubMed  Google Scholar 

  29. Cimini M et al (2007) c-Kit dysfunction impairs myocardial healing after infarction. Circulation 116:I-77

    Article  CAS  Google Scholar 

  30. Ayach BB et al (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci U S A 103:2304–2309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sun J et al (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724

    Article  CAS  PubMed  Google Scholar 

  32. Levick SP et al (2008) Protection from adverse myocardial remodeling secondary to chronic volume overload in mast cell deficient rats. J Mol Cell Cardiol 45:56–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Galli SJ (1997) The Paul Kallos memorial lecture. The mast cell: a versatile effector cell for a challenging world. Int Arch Allergy Immunol 113:14–22

    Article  CAS  PubMed  Google Scholar 

  34. Patella V et al (1995) Human heart mast cells: a definitive case of mast cell heterogeneity. Int Arch Allergy Immunol 106:386–393

    Article  CAS  PubMed  Google Scholar 

  35. Patella V et al (1995) Human heart mast cells. Isolation, purification, ultrastructure, and immunologic characterization. J Immunol 154:2855–2865

    CAS  PubMed  Google Scholar 

  36. Forman MF et al (2004) Spontaneous histamine secretion during isolation of rat cardiac mast cells. Inflamm Res 53:453–457

    Article  CAS  PubMed  Google Scholar 

  37. Levick SP et al (2009) Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension 53:1041–1047

    Article  CAS  PubMed  Google Scholar 

  38. Ali H, Pearce FL (1985) Isolation and properties of cardiac and other mast cells from the rat and guinea-pig. Agents Actions 16:138–140

    Article  CAS  PubMed  Google Scholar 

  39. Morgan LG et al (2008) A novel technique for isolating functional mast cells from the heart. Inflamm Res 57:1–6

    Article  Google Scholar 

  40. McLarty JL et al (2011) Isolation of functional cardiac immune cells. J Vis Exp 58:pii: 3020. doi:10.3791/3020

    Google Scholar 

  41. Levick SP et al (2010) Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension 55:270–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Melendez GC et al (2011) Substance P induces adverse myocardial remodeling via a mechanism involving cardiac mast cells. Cardiovasc Res 92:420–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Murray DB et al (2007) Response of cardiac mast cells to atrial natriuretic peptide. Am J Physiol Heart Circ Physiol 293:H1216–H1222

    Article  CAS  PubMed  Google Scholar 

  44. Opgenorth TJ et al (1990) Atrial peptides induce mast cell histamine release. Peptides 11:1003–1007

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida H et al (1996) Histamine release induced by human natriuretic peptide from rat peritoneal mast cells. Regul Pept 61:45–49

    Article  CAS  PubMed  Google Scholar 

  46. Reinecke M et al (1982) Localization of neurotensin immunoreactive nerve fibers in the guinea-pig heart: evidence derived by immunohistochemistry, radioimmunoassay and chromatography. Neuroscience 7:1785–1795

    Article  CAS  PubMed  Google Scholar 

  47. Rioux F et al (1985) Characterization of the histamine releasing effect of neurotensin in the rat heart. Peptides 6:121–125

    Article  CAS  PubMed  Google Scholar 

  48. Pang X et al (1998) A neurotensin receptor antagonist inhibits acute immobilization stress-induced cardiac mast cell degranulation, a corticotropin-releasing hormone-dependent process. J Pharmacol Exp Ther 287:307–314

    CAS  PubMed  Google Scholar 

  49. Murray DB et al (2008) Effects of nonselective endothelin-1 receptor antagonism on cardiac mast cell-mediated ventricular remodeling in rats. Am J Physiol Heart Circ Physiol 294:H1251–H1257

    Article  CAS  PubMed  Google Scholar 

  50. Melendez GC et al (2010) Oxidative stress mediated cardiac mast cell degranulation. Toxicol Environ Chem 92:1293–1301

    Article  CAS  Google Scholar 

  51. Masini E et al (2002) Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo. Br J Pharmacol 136:905–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Xu D et al (2008) IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci U S A 105:10913–10918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Crivellato E et al (2011) The history of the controversial relationship between mast cells and basophils. Immunol Lett 141(1):10–17

    Article  CAS  PubMed  Google Scholar 

  54. Forman MF et al (2006) Rat cardiac mast cell maturation and differentiation following acute ventricular volume overload. Inflamm Res 55:408–415

    Article  CAS  PubMed  Google Scholar 

  55. Li J et al (2012) Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart. J Mol Cell Cardiol 53:469–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Tomimori Y et al (2002) Mast cell chymase regulates dermal mast cell number in mice. Biochem Biophys Res Commun 290:1478–1482

    Article  CAS  PubMed  Google Scholar 

  57. Longley BJ et al (1997) Chymase cleavage of stem cell factor yields a bioactive, soluble product. Proc Natl Acad Sci U S A 94:9017–9021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Jahanyar J et al (2008) Increased expression of stem cell factor and its receptor after left ventricular assist device support: a potential novel target for therapeutic interventions in heart failure. J Heart Lung Transplant 27:701–709

    Article  PubMed  Google Scholar 

  59. Frangogiannis NG et al (1998) Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation 98:687–698

    Article  CAS  PubMed  Google Scholar 

  60. Somasundaram P et al (2005) Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol 205:102–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Jaggi AS et al (2007) Cardioprotective effects of mast cell modulators in ischemia-reperfusion-induced injury in rats. Methods Find Exp Clin Pharmacol 29:593–600

    Article  CAS  PubMed  Google Scholar 

  62. Gailit J et al (2001) The differentiation and function of myofibroblasts is regulated by mast cell mediators. J Invest Dermatol 117:1113–1119

    Article  CAS  PubMed  Google Scholar 

  63. Galli SJ, Kitamura Y (1987) Genetically mast-cell-deficient W/Wv and Sl/Sld mice. Their value for the analysis of the roles of mast cells in biologic responses in vivo. Am J Pathol 127:191–198

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Grimbaldeston MA et al (2005) Mast cell-deficient W-sash c-kit Mutant KitW-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Brower GL, Janicki JS (2005) Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Card Fail 11:548–556

    Article  CAS  PubMed  Google Scholar 

  66. Chancey AL et al (2002) Cardiac mast cell-mediated activation of gelatinase and alteration of ventricular diastolic function. Am J Physiol 282:H2152–H2158

    CAS  Google Scholar 

  67. Gilles S et al (2003) Release of TNF-α during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res 60:608–616

    Article  CAS  PubMed  Google Scholar 

  68. Seguin CA et al (2008) TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine 33:356–365

    Article  PubMed  Google Scholar 

  69. Bozkurt B et al (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391

    Article  CAS  PubMed  Google Scholar 

  70. Jobe LJ et al (2009) TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload. Am J Physiol Heart Circ Physiol 297:H1462–H1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Gurantz D et al (2005) IL-1β and TNF-α upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol 38:505–515

    Article  CAS  PubMed  Google Scholar 

  72. Sun M et al (2007) Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115:1398–1407

    Article  CAS  PubMed  Google Scholar 

  73. Asanuma H et al (2006) Blockade of histamine H2 receptors protects the heart against ischemia and reperfusion injury in dogs. J Mol Cell Cardiol 40:666–674

    Article  CAS  PubMed  Google Scholar 

  74. Kim J et al (2006) Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol 48:1378–1384

    Article  CAS  PubMed  Google Scholar 

  75. Kunzmann S et al (2007) Connective tissue growth factor expression is regulated by histamine in lung fibroblasts: potential role of histamine in airway remodeling. J Allergy Clin Immunol 119:1398–1407

    Article  CAS  PubMed  Google Scholar 

  76. Tetlow LC, Woolley DE (2004) Effect of histamine on the production of matrix metalloproteinases-1, -3, -8 and -13, and TNFalpha and PGE(2) by human articular chondrocytes and synovial fibroblasts in vitro: a comparative study. Virchows Arch 445:485–490

    Article  CAS  PubMed  Google Scholar 

  77. Linssen MC et al (1993) Production of arachidonic acid metabolites in adult rat cardiac myocytes, endothelial cells, and fibroblast-like cells. Am J Physiol Heart Circ Physiol 264:H973–H982

    CAS  Google Scholar 

  78. Oyamada S et al (2011) Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther 339:143–151

    Article  CAS  PubMed  Google Scholar 

  79. Caughey GH et al (2000) Angiotensin II generation by mast cell α- and β-chymases. Biochim Biophys Acta 1480:245–257

    Article  CAS  PubMed  Google Scholar 

  80. Jin D et al (2001) Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn J Pharmacol 86:203–214

    Article  CAS  PubMed  Google Scholar 

  81. Maruyama R et al (2000) Angiotensin-converting enzyme-independent angiotensin formation in a human model of myocardial ischemia: modulation of norepinephrine release by angiotensin type 1 and angiotensin type 2 receptors. J Pharmacol Exp Ther 294:248–254

    CAS  PubMed  Google Scholar 

  82. Mackins CJ et al (2006) Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest 116:1063–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Zhao XY et al (2008) Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol Cell Biochem 310:159–166

    Article  CAS  PubMed  Google Scholar 

  84. Silver RB et al (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci U S A 101:13607–13612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Tchougounova E et al (2005) A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 280:9291–9296

    Article  CAS  PubMed  Google Scholar 

  86. Wypij DM et al (1992) Role of mast cell chymase in the extracellular processing of big-endothelin-1 to endothelin-1 in the perfused rat lung. Biochem Pharmacol 43:845–853

    Article  CAS  PubMed  Google Scholar 

  87. Taipale J et al (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696

    Article  CAS  PubMed  Google Scholar 

  88. Lindstedt KA et al (2001) Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J 15:1377–1388

    Article  CAS  PubMed  Google Scholar 

  89. Gruber BL et al (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84:1657–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. McLarty JL et al (2011) Tryptase/protease-activated receptor 2 interactions induce selective mitogen-activated protein kinase signaling and collagen synthesis by cardiac fibroblasts. Hypertension 58:264–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhang W et al (2011) The development of myocardial fibrosis in transgenic mice with targeted overexpression of tumor necrosis factor requires mast cell-fibroblast interactions. Circulation 124:2106–2116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Hayward CS et al (2000) The roles of gender, the menopause and hormone replacement on cardiovascular function. Cardiovasc Res 46:28–49

    Article  CAS  PubMed  Google Scholar 

  93. Chancey AL et al (2005) Modulation of cardiac mast cell-mediated extracellular matrix degradation by estrogen. Am J Physiol Heart Circ Physiol 289:H316–H321

    Article  CAS  PubMed  Google Scholar 

  94. Harnish DC et al (2004) Beneficial effects of estrogen treatment in the HLA-B27 transgenic rat model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 286:G118–G125

    Article  CAS  PubMed  Google Scholar 

  95. Kim MS et al (2001) Estrogen regulates cytokine release in human mast cells. Immunopharmacol Immunotoxicol 23:495–504

    Article  CAS  PubMed  Google Scholar 

  96. Lu H et al (2011) Prevention of adverse cardiac remodeling to volume overload in female rats is the result of an estrogen-altered mast cell phenotype. Am J Physiol Heart Circ Physiol 302:H811–H817

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by grants from NHLBI (to J.S.J.—#s RO1-HL-59981, R01-HL-62228, R21-HL-089483 and to S.P.L. R00-HL-093215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Janicki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Janicki, J.S., Brower, G.L., Levick, S.P. (2015). The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics