Skip to main content

High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites

  • Protocol
Malaria Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1325))

Abstract

The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range of different human receptors through Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of the infected cell. As the var genes encoding the large PfEMP1 antigens are extensively polymorphic, vaccine development strategies are focused on targeting the functional binding epitopes. This involves identification of recombinant fragments of PfEMP1s that induce antibodies, which hinder the adhesion of the IE to a given receptor or tissue. Different assays to measure the blocking of adhesion have been described in the literature, each with different advantages. This chapter describes a high-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith JD, Rowe JA, Higgins MK et al (2013) Malaria’s deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 15:1976–1983

    Article  CAS  PubMed  Google Scholar 

  2. Bull PC, Lowe BS, Kortok M et al (1998) Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med 4:358–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chan JA, Howell KB, Reiling L et al (2012) Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest 122:3227–3238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nielsen MA, Staalsoe T, Kurtzhals JA et al (2002) Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol 168:3444–3450

    Article  CAS  PubMed  Google Scholar 

  5. Gupta S, Snow RW, Donnelly CA et al (1999) Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 5:340–343

    Article  CAS  PubMed  Google Scholar 

  6. Cohen S, McGregor IA, Carrington S (1961) Gamma-globulin and acquired immunity to human malaria. Nature 192:733–737

    Article  CAS  PubMed  Google Scholar 

  7. McGregor IA, Carrington SP, Cohen S (1963) Treatment of East African P. falciparum malaria with West African human γ-globulin. Trans R Soc Trop Med Hyg 57:170–175

    Article  Google Scholar 

  8. Jensen ATR, Magistrado P, Sharp S et al (2004) Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med 199:1179–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Salanti A, Dahlback M, Turner L et al (2004) Evidence for the Involvement of VAR2CSA in Pregnancy-associated Malaria. J Exp Med 200:1197–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bigey P, Gnidehou S, Doritchamou J et al (2011) The NTS-DBL2X region of VAR2CSA induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A. J Infect Dis 204:1125–1133

    Article  CAS  PubMed  Google Scholar 

  11. Turner L, Lavstsen T, Berger SS et al (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498:502–505

    Article  CAS  PubMed  Google Scholar 

  12. Salanti A, Staalsoe T, Lavstsen T et al (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49:179–191

    Article  CAS  PubMed  Google Scholar 

  13. Beeson JG, Ndungu F, Persson KE et al (2007) Antibodies among men and children to placental-binding Plasmodium falciparum-infected erythrocytes that express var2csa. Am J Trop Med Hyg 77:22–28

    PubMed  Google Scholar 

  14. Oleinikov AV, Voronkova VV, Frye IT et al (2012) A plasma survey using 38 PfEMP1 domains reveals frequent recognition of the Plasmodium falciparum antigen VAR2CSA among young Tanzanian children. PLoS One 7, e31011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fried M, Avril M, Chaturvedi R et al (2013) Multilaboratory approach to preclinical evaluation of vaccine immunogens for placental malaria. Infect Immun 81:487–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nielsen MA, Pinto VV, Resende M et al (2009) Induction of adhesion-inhibitory antibodies against placental Plasmodium falciparum parasites by using single domains of VAR2CSA. Infect Immun 77:2482–2487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ghumra A, Khunrae P, Ataide R et al (2011) Immunisation with recombinant PfEMP1 domains elicits functional rosette-inhibiting and phagocytosis-inducing antibodies to Plasmodium falciparum. PLoS One 6, e16414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Moll K, Pettersson F, Vogt AM et al (2007) Generation of cross-protective antibodies against Plasmodium falciparum sequestration by immunization with an erythrocyte membrane protein 1-duffy binding-like 1 alpha domain. Infect Immun 75:211–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Doritchamou J, Bigey P, Nielsen MA et al (2013) Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS-DBL2X region of VAR2CSA. Vaccine 31:4516–4522

    Article  CAS  PubMed  Google Scholar 

  20. Beeson JG, Mann EJ, Elliott SR et al (2004) Antibodies to variant surface antigens of Plasmodium falciparum-infected erythrocytes and adhesion inhibitory antibodies are associated with placental malaria and have overlapping and distinct targets. J Infect Dis 189:540–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Boeuf P, Hasang W, Hanssen E et al (2011) Relevant assay to study the adhesion of Plasmodium falciparum-infected erythrocytes to the placental epithelium. PLoS One 6, e21126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fernandez P, Kviebig N, Dechavanne S et al (2008) Var2CSA DBL6-epsilon domain expressed in HEK293 induces limited cross-reactive and blocking antibodies to CSA binding parasites. Malar J 7:170

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fernandez P, Petres S, Mecheri S et al (2010) Strain-transcendent immune response to recombinant Var2CSA DBL5-epsilon domain block P. falciparum adhesion to placenta-derived BeWo cells under flow conditions. PLoS One 5, e12558

    Article  PubMed Central  PubMed  Google Scholar 

  24. Fried M, Duffy PE (2002) Analysis of CSA-binding parasites and antiadhesion antibodies. Methods Mol Med 72:555–560

    CAS  PubMed  Google Scholar 

  25. Magistrado PA, Minja D, Doritchamou J et al (2011) High efficacy of anti DBL4varepsilon-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women. Vaccine 29:437–443

    Article  CAS  PubMed  Google Scholar 

  26. Obiakor H, Avril M, Macdonald NJ et al (2013) Identification of VAR2CSA domain-specific inhibitory antibodies of the Plasmodium falciparum erythrocyte membrane protein 1 using a novel flow cytometry assay. Clin Vaccine Immunol 20:433–442

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tuikue Ndam NG, Fievet N, Bertin G et al (2004) Variable adhesion abilities and overlapping antigenic properties in placental Plasmodium falciparum isolates. J Infect Dis 190:2001–2009

    Article  PubMed  Google Scholar 

  28. Lucchi NW, Koopman R, Peterson DS et al (2006) Plasmodium falciparum-infected red blood cells selected for binding to cultured syncytiotrophoblast bind to chondroitin sulfate A and induce tyrosine phosphorylation in the syncytiotrophoblast. Placenta 27:384–394

    Article  CAS  PubMed  Google Scholar 

  29. Viebig NK, Nunes MC, Scherf A et al (2006) The human placental derived BeWo cell line: a useful model for selecting Plasmodium falciparum CSA-binding parasites. Exp Parasitol 112:121–125

    Article  CAS  PubMed  Google Scholar 

  30. Haase RN, Megnekou R, Lundquist M et al (2006) Plasmodium falciparum parasites expressing pregnancy-specific variant surface antigens adhere strongly to the choriocarcinoma cell line BeWo. Infect Immun 74:3035–3038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Goodyer ID, Johnson J, Eisenthal R et al (1994) Purification of mature-stage Plasmodium falciparum by gelatine flotation. Ann Trop Med Parasitol 88:209–211

    CAS  PubMed  Google Scholar 

  32. Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420

    Article  CAS  PubMed  Google Scholar 

  33. Moore JM, Nahlen B, Ofulla AV et al (1997) A simple perfusion technique for isolation of maternal intervillous blood mononuclear cells from human placentae. J Immunol Methods 209:93–104

    Article  CAS  PubMed  Google Scholar 

  34. Ribacke U, Moll K, Albrecht L et al (2013) Improved in vitro culture of Plasmodium falciparum permits establishment of clinical isolates with preserved multiplication, invasion and rosetting phenotypes. PLoS One 8, e69781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Frankland S, Adisa A, Horrocks P et al (2006) Delivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains. Eukaryot Cell 5:849–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Frankland S, Elliott SR, Yosaatmadja F et al (2007) Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface. Eukaryot Cell 6:1584–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Prudhomme JG, Sherman IW (1999) A high capacity in vitro assay for measuring the cytoadherence of Plasmodium falciparum-infected erythrocytes. J Immunol Methods 229:169–176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten A. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nielsen, M.A., Salanti, A. (2015). High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites. In: Vaughan, A. (eds) Malaria Vaccines. Methods in Molecular Biology, vol 1325. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2815-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2815-6_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2814-9

  • Online ISBN: 978-1-4939-2815-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics