Skip to main content

Direct Evidence of the Link Between Energetic Metabolism and Proliferation Capacity of Cancer Cells In Vitro

  • Conference paper
Oxygen Transport to Tissue XXXVII

Abstract

The aim of the study was to assess the link between the metabolic profile and the proliferation capacity of a range of human and murine cancer cell lines. First, the combination of mitochondrial respiration and glycolytic efficiency measurements allowed the determination of different metabolic profiles among the cell lines, ranging from a mostly oxidative to a mostly glycolytic phenotype. Second, the study revealed that cell proliferation, evaluated by DNA synthesis measurements, was statistically correlated to glycolytic efficiency. This indicated that glycolysis is the key energetic pathway linked to cell proliferation rate. Third, to validate this hypothesis and exclude non-metabolic factors, mitochondria-depleted were compared to wild-type cancer cells, and the data showed that enhanced glycolysis observed in mitochondria-depleted cells is also associated with an increase in proliferation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O (1925) Uber den Stoffwechsel der Carcinomzelle. Klin Wochenschr 4:534–536

    Article  CAS  Google Scholar 

  2. Penta JS, Johnson FM, Wachsman JT et al (2001) Mitochondrial DNA in human malignancy. Mutat Res 488:119–133

    Article  CAS  PubMed  Google Scholar 

  3. Xu RH, Pelicano H, Zhou Y et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    CAS  PubMed  Google Scholar 

  4. Moreno-Sanchez R, Marin-Hernandez A, Saavedra E, Pardo JP et al (2014) Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 50:10–23

    Article  CAS  PubMed  Google Scholar 

  5. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A et al (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    Article  CAS  PubMed  Google Scholar 

  6. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465

    Article  CAS  PubMed  Google Scholar 

  7. Diepart C, Verrax J, Calderon PB et al (2010) Comparison of methods for measuring oxygen consumption in tumor cells in vitro. Anal Biochem 396:250–256

    Article  CAS  PubMed  Google Scholar 

  8. Taper HS, Woolley GW, Teller MN et al (1966) A new transplantable mouse liver tumor of spontaneous origin. Cancer Res 26:143–148

    CAS  PubMed  Google Scholar 

  9. Volpe JP, Hunter N, Basic I et al (1985) Metastatic properties of murine sarcomas and carcinomas. I. Positive correlation with lung colonization and lack of correlation with s.c. tumor take. Clin Exp Metastasis 3:281–294

    Article  CAS  PubMed  Google Scholar 

  10. Rockwell S, Kallman RF (1972) Growth and cell population kinetics of single and multiple KHT sarcomas. Cell Tissue Kinet 5:449–457

    CAS  PubMed  Google Scholar 

  11. Reilly RT, Gottlieb MB, Ercolini AM et al (2000) HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 60:3569–3576

    CAS  PubMed  Google Scholar 

  12. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503

    Article  CAS  PubMed  Google Scholar 

  13. James PE, Jackson SK, Grinberg OY et al (1995) The effects of endotoxin on oxygen consumption of various cell types in vitro: an EPR oximetry study. Free Radic Biol Med 18:641–647

    Article  CAS  PubMed  Google Scholar 

  14. Jordan BF, Gregoire V, Demeure RJ et al (2002) Insulin increases the sensitivity of tumors to irradiation: involvement of an increase in tumor oxygenation mediated by a nitric oxide-dependent decrease of the tumor cells oxygen consumption. Cancer Res 62:3555–3561

    CAS  PubMed  Google Scholar 

  15. Fogal V, Richardson AD, Karmali PP et al (2010) Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol 30:1303–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  17. Hume DA, Weidemann MJ (1979) Role and regulation of glucose metabolism in proliferating cells. J Natl Cancer Inst 62:3–8

    Article  CAS  PubMed  Google Scholar 

  18. Hedeskov CJ (1968) Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. Biochem J 110:373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22:258–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Télévie, the Belgian National Fund for Scientific Research (F.R.S.-FNRS), the Fonds Joseph Maisin, the Fondation Belge contre le Cancer, the Saint-Luc Foundation, the Actions de Recherches Concertées-Communauté Française de Belgique (ARC 04/09-317), and the European Research Council (FP7/2007-2013 ERC Independent Researcher Starting Grant No. 243188 TUMETABO). B.F.J. and P.S. are Research Associates and P.D. a Research Fellow of the F.R.S.-FNRS. G.D. is a Télévie Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Gallez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, New York

About this paper

Cite this paper

De Preter, G. et al. (2016). Direct Evidence of the Link Between Energetic Metabolism and Proliferation Capacity of Cancer Cells In Vitro. In: Elwell, C.E., Leung, T.S., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXVII. Advances in Experimental Medicine and Biology, vol 876. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3023-4_26

Download citation

Publish with us

Policies and ethics