Skip to main content

124I in Differentiated Thyroid Cancer

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

124I was first used in 1960 by Phillips et al. (Acta Unio Int Contra Cancrum 16:1434–1438, 1960) for the treatment of differentiated thyroid carcinoma (DTC). However, because the decay of 131I was more suited for therapy and its production was easier and less expensive than 124I, 131I has remained the most frequently used radioiodine isotope for the treatment of DTC. Likewise, because the decay characteristics of 131I were more suitable for the imaging equipment at that time, 131I became the most frequently used radioiodine isotope for diagnostic imaging of the thyroid. Subsequently, 123I became available in the mid-1960s (Rhodes Isot Radiat Technol 4:275–280, 1967), and in the United States 123I is now the most frequently used radioisotope of iodine for diagnostic imaging in differentiated thyroid carcinoma (DTC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phillips A, Haybittle J, Newbery G. Use of 124I for the treatment of carcinoma of the thyroid. Acta Unio Int Contra Cancrum. 1960;16:1434–8.

    CAS  PubMed  Google Scholar 

  2. Rhodes B, Wagner H, Gerald M. Iodine-123: development and usefulness of a new radiopharmaceutical. Isot Radiat Technol. 1967;4:275–80.

    Google Scholar 

  3. Freudenberg LS, Antoch G, Jentzen W, et al. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol. 2004;14:2092–8.

    Article  CAS  PubMed  Google Scholar 

  4. Rault E, Vandenberghe S, Holen R, Beenhouwer J, Staelens S, Lemahieu I. Comparison of image quality of different iodine isotopes (123I, 124I, and 131I). Cancer Biother Radiopharm. 2007;22:423–30.

    Article  PubMed  Google Scholar 

  5. Freudenberg L, Jentzen W, Sahl A, Bockishc A, Rosenbaum-Krumme S. Clinical applications of 124I PET-CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38(Suppl):S48–56.

    Article  PubMed  Google Scholar 

  6. Phan H, Jager P, Paans A, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:958–65.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Capoccetti F, Criscuoli B, Rossi G, Rerretti F, Manni C, Brianzoni E. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:536–45.

    CAS  PubMed  Google Scholar 

  8. Van Nostrand D, Moreau S, Bandaru V, Atkins A, Chennupati S, Mete M, Burman K, Wartofsky L. 124I positron emission tomography versus 131I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20:879–83.

    Article  PubMed  Google Scholar 

  9. Atkins F, Van Nostrand D, Moreau S, et al. Comparison of the blood biokinetics of 124I and 131I in patients with well-differentiated thyroid cancer (WDTC). J Nucl Med. 2008;49(Suppl):323.

    Google Scholar 

  10. Lambrecht R, Sajjad M, Qureshi M, Al-Yanbawi S. Production of iodine-124. J Radioanal Nucl Chem Lett. 1988;127:143–50.

    Article  CAS  Google Scholar 

  11. Sharma H, Zweit J, Downey S, et al. Production of 124I for positron emission tomography. J Label Compd Rad. 1988;26:165–7.

    Article  Google Scholar 

  12. Firouzbakht M, Schlyer D, Finn R, et al. Iodine-124 production: excitation functions for the 124Te(d,2n)124I and 124Te(d,3n)123I reactions from 7 to 24 MeV. Nucl Instrum Methods B. 1993;79:909–10.

    Article  Google Scholar 

  13. Khorjekar G, Van Nostrand D, Kharazi P, Moreau S, Atkins F, Chennupati S, Mete M, Burman K, Wartofsky L. 124I versus 131I in the identification of functioning residual thyroid tissue and/or metastases in patients with differentiated thyroid cancer: update of initial report. J Nucl Med. 2011;52(Suppl):1295.

    Google Scholar 

  14. Abdul-Fatah S, Zamburlini M, Halders S, Brans B, Teule G, Kemerink G. Identification of a shine-through artifact in the trachea with 124I PET/CT. J Nucl Med. 2009;50:909–11.

    Google Scholar 

  15. Nagarajah J, Jentzen W, Hartung V, Rosenbaum-Krumme S, Mikat C, Heusner Till A, Antoch G, Bockisch A, Stahl A. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38:1862–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wells K, Moreau S, Shin YR, Van Nostrand D, Burman K, Wartofsky L. Positive (+) post-treatment (tx) scans after the radioiodine (RAI) tx of patients who have well-differentiated thyroid cancer (WDTC), positive serum thyroglobulin levels (TG+), and negative diagnostic (dx) RAI whole body scans (WBS-): predictive values and frequency. J Nucl Med. 2008;49(Suppl):238P.

    Google Scholar 

  17. Freudenberg L, Jentzen W, Muller S, Bockisch. Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging. 2008;33:502–8.

    Article  Google Scholar 

  18. Chennupati S, Bandaru VV, Prasad K, Van Nostrand D. Do negative diagnostic 131I and 124I scans exclude 131I as a treatment option in patients with positive thyroglobulin levels? J Nucl Med. 2009;50(Suppl):343P.

    Google Scholar 

  19. Khorjekar GR, Van Nostrand D, Garcia C, O’Neil J, Moreau S, Atkins FB, Mete M, Orquiza MH, Burman K, Wartofsky L. Do Negative 124I Pre-therapy Positron Emission Tomography Scans in Patients with Elevated Serum Thyroglobulin Levels Predict Negative 131I Post-therapy Scans? Thyroid. 2014;24;1394–99.

    Google Scholar 

  20. Freudenberg LS, Jentzen W, Petrich T, et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging. 2010;37:2264–76.

    Article  Google Scholar 

  21. Van Nostrand D, Khorjekar G, O’Neil J, Moreau S, Atkins F, Kharazi P, Mete M, Chennupati S, Burman K, Wartofsky L. Recombinant human thyroid stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole body and 124I PET. J Nucl Med. 2012;53:359–62.

    Article  PubMed  Google Scholar 

  22. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med. 2005;46 Suppl 1:99S–106.

    CAS  PubMed  Google Scholar 

  23. Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, et al. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response--implications for radionuclide therapy. J Nucl Med. 2008;49:1884–99.

    Article  PubMed  Google Scholar 

  24. Dewaraja Y, Schipper M, Roberson P, Wilderman S, Amro H, Regan D, Koral K, Kaminski M, Avram A. 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51:1155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Senthamizhchelvan S, Hobbs RF, Song H, Frey EC, Zhang Z, Armour E, Wahl RL, Loeb DM, Sgouros G. Tumor dosimetry and response for 153Sm-EDTMP therapy of high-risk osteosarcoma. J Nucl Med. 2012;53:215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maxon HR, Thomas SR, Hertzberg VS, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937–41.

    Article  CAS  PubMed  Google Scholar 

  27. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources. 1987 Oak Ridge National Laboratory Report ORNL/TM-8381 V1-7.

    Google Scholar 

  28. Stabin M, Sparks R, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  29. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49:1017–23.

    Article  PubMed  Google Scholar 

  30. Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.

    Article  PubMed  Google Scholar 

  31. He B, Frey E. Comparison of conventional, model-based quantitative planar, and quantitative SPECT image processing methods for organ activity estimation using In-111 agents. Phys Med Biol. 2006;51:3967–81.

    Article  CAS  PubMed  Google Scholar 

  32. Sgouros G, Kolbert K. The three-dimensional internal dosimetry software package, 3D-ID. In: Zaidi H, Sgouros G, editors. Therapeutic applications of Monte Carlo calculations in nuclear medicine. Philadelphia: Institute of Physics; 2002. p. 249–61.

    Chapter  Google Scholar 

  33. Prideaux A, Song H, Hobbs R, He B, Frey E, Ladenson P, Wahl R, Sgouros G. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J Nucl Med. 2007;48:1008–16.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guy M, Flux G, Papavasileiou P, Flower M, Ott R. RMDP: a dedicated package for 131I SPECT quantification, registration and patient-specific dosimetry. Cancer Biother Radiopharm. 2003;18:61–9.

    Article  CAS  PubMed  Google Scholar 

  35. Franck D, de Carlan L, Pierrat N, Broggio D, Lamart S. OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations. Radiat Prot Dosimetry. 2007;127:262–5.

    Article  CAS  PubMed  Google Scholar 

  36. Botta F, Mairani A, Battistoni G, Cremonesi M, Di Dia A, Fassò A, Ferrari A, Ferrari M, Paganelli G, Pedroli G, Valente M. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy. Med Phys. 2011;38:3944–54.

    Article  CAS  PubMed  Google Scholar 

  37. Dieudonné A, Hobbs R, Bolch W, Sgouros G, Gardin I. Fine resolution voxel S-values for constructing absorbed dose distributions at variable voxel size. J Nucl Med. 2010;51:1600–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sgouros G, Kolbert K, Sheikh A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  39. Kolbert K, Pentlow K, Pearson J, et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med. 2007;48:143–9.

    CAS  PubMed  Google Scholar 

  40. Dale R. Use of the linear-quadratic radiobiological model for quantifying kidney response in targeted radiotherapy. Cancer Biother Radiopharm. 2004;19:363–70.

    Article  PubMed  Google Scholar 

  41. Millar WT. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy. Br J Radiol. 1991;64:242–51.

    Article  CAS  PubMed  Google Scholar 

  42. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24:103–10.

    Article  CAS  PubMed  Google Scholar 

  43. Howell RW, Goddu SM, Rao DV. Application of the linear-quadratic model to radioimmunotherapy: further support for the advantage of longer-lived radionuclides. J Nucl Med. 1994;35:1861–9.

    CAS  PubMed  Google Scholar 

  44. Baechler S, Hobbs R, Prideaux A, Wahl R, Sgouros G. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry. Med Phys. 2008;35:1123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hobbs R, Sgouros G. Calculation of the biological effective dose (BED) for piecewise defined dose-rate fits. Med Phys. 2009;36:904–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hobbs RF, Wahl RL, Lodge MA, Javadi MS, Cho S, Chien D, Ewertz ME, Esaias CE, Ladenson PW, Sgouros G. 124I PET-based 3D-RD dosimetry for pediatric thyroid cancer patient: case study for real-time patient-specific dosimetry. J Nucl Med. 2009;50:1844–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Khorjekar G, Senthamizhchelvan S, Hobbs R, Orquiza M, Atkins F, Mete M, Garcia C, Wartofsky L, Sgouros G, Van Nostrand, Douglas. Correlation of 124I PET dosimetry with clinical response of 131I therapy for metastatic differentiated thyroid cancer. Oral presentation presented at: The Society of Nuclear Medicine annual Meeting (2013), Vancouver, British Columbia, Canada. J Nuc Med. 2013;54(Suppl):52.

    Google Scholar 

  48. Zanzonico PB. Radiation dose to patients and relatives incident to 131I therapy. Thyroid. 1997;7:199–204.

    Article  CAS  PubMed  Google Scholar 

  49. Van Nostrand D. Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis. 2010;17:154–61.

    Article  PubMed  Google Scholar 

  50. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ. Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol. 2008;26:3770–6.

    Article  PubMed  Google Scholar 

  51. Raza H, Khan AU, Hameed A, Khan A. Quantitative evaluation of salivary gland dysfunction after radioiodine therapy using salivary gland scintigraphy. Nucl Med Commun. 2006;27:495–9.

    Article  CAS  PubMed  Google Scholar 

  52. Jentzen W, Schneider E, Freudenberg L, Eising EG, Gorges R, Muller SP, et al. Relationship between cumulative radiation dose and salivary gland uptake associated with radioiodine therapy of thyroid cancer. Nucl Med Commun. 2006;27:669–76.

    Article  CAS  PubMed  Google Scholar 

  53. Jentzen W, Hobbs RF, Stahl A, Knust J, Sgouros G, Bockisch A. Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37:884–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hobbs R, Jentzen W, Bockisch A, Sgouros G. Monte Carlo-based 3-dimensional dosimetry of salivary glands in radioiodine treatment of differentiated thyroid cancer estimated using 124I PET. Q J Nucl Med Mol Imaging. 2013;57:79–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gates GA, Work WP. Radioisotope scanning of the salivary glands. A preliminary report. Laryngoscope. 1967;77:861–75.

    Article  CAS  PubMed  Google Scholar 

  56. Mishkin FS. Radionuclide salivary gland imaging. Semin Nucl Med. 1981;11:258–65.

    Article  CAS  PubMed  Google Scholar 

  57. Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys Med Biol. 2010;55:2365–98.

    Article  PubMed  Google Scholar 

  58. Jentzen W, Weise R, Kupferschlager J, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging. 2008;35:611–23.

    Article  PubMed  Google Scholar 

  59. Teo BK, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. 2007;48:802–10.

    PubMed  Google Scholar 

  60. Nakada K, Ishibashi T, Takei T, et al. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med. 2005;46:261–6.

    PubMed  Google Scholar 

  61. Jentzen W, Balschuweit D, Schmitz J, et al. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using 124I PET/CT imaging. Eur J Nucl Med Mol Imaging. 2010;37:2298–306.

    Article  CAS  PubMed  Google Scholar 

  62. Van Nostrand D, Bandaru V, Chennupati V, Kulkarni K, Wexler J, Atkins F, Mete M, Gadwale G. Radiopharmacokinetics of radioiodine in the parotid glands after the administration of lemon juice. Thyroid. 2010;20:1113–9.

    Article  PubMed  Google Scholar 

  63. Phillips AF. The gamma -ray dose in carcinoma of the thyroid treated by radio-iodine. Acta Radiol. 1954;41:533–44.

    Article  CAS  PubMed  Google Scholar 

  64. Goolden AWG, Fowler JF, Matthews CM. Comparison of iodine 124 and iodine 131 for thyroid ablation. Br J Radiol. 1963;36:346–9.

    Article  CAS  PubMed  Google Scholar 

  65. Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules. 2010;15:2686–718.

    Article  CAS  PubMed  Google Scholar 

  66. Hall T, Siegel M, et al. Production of 124I by the deuteron bombardment of tellurium. Phys Rev. 1954;95:1208.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Studies evaluating 124I performed at MedStar Washington Hospital Center were supported by grants from the Latham Fund, Genzyme Corporation, IBA Corporation, and grateful patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Van Nostrand MD, FACP, FACNM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Nostrand, D., Hobbs, R., Atkins, F.B., Sgouros, G. (2016). 124I in Differentiated Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_103

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_103

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics