Skip to main content

Effects of Metabolic Acidosis on Skeletal Muscle

  • Chapter
  • First Online:
Metabolic Acidosis

Abstract

Metabolic acidosis is common among persons with chronic kidney disease due to an inability to excrete the daily acid load. A more subtle or low-grade acidosis also occurs in otherwise healthy individuals due to the effects of aging and the high acid-forming potential of the Western diet. This has numerous sequelae, including effects on skeletal muscle. Chronic metabolic acidosis increases skeletal muscle protein breakdown and may impair protein synthesis as well. This is partly mediated by impaired signaling via the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway, which triggers a cascade of proteolytic events involving activation of caspase-3 and the ubiquitin-proteasome system. Over time, this likely results in a loss of lean mass and skeletal muscle wasting, which has been associated with morbidity and mortality. Recent evidence has also associated metabolic acidosis with impaired physical function. Correction of acidosis reduces muscle protein degradation in humans, preserves muscle mass, and may improve muscle strength and functional performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrero JJ, Chmielewski M, Axelsson J, Snaedal S, Heimburger O, Barany P, et al. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin Nutr. 2008;27(4):557–64.

    Article  PubMed  Google Scholar 

  2. Frassetto LA, Morris Jr RC, Sebastian A. Effect of age on blood acid–base composition in adult humans: role of age-related renal functional decline. Am J Physiol. 1996;271(6 Pt 2):F1114–22.

    CAS  PubMed  Google Scholar 

  3. Amodu A, Abramowitz MK. Dietary acid, age, and serum bicarbonate levels among adults in the United States. Clin J Am Soc Nephrol. 2013;8(12):2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berkemeyer S, Vormann J, Gunther AL, Rylander R, Frassetto LA, Remer T. Renal net acid excretion capacity is comparable in prepubescence, adolescence, and young adulthood but falls with aging. J Am Geriatr Soc. 2008;56(8):1442–8.

    Article  PubMed  Google Scholar 

  5. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med. 1994;330(25):1776–81.

    Article  CAS  PubMed  Google Scholar 

  6. Ciechanover A. The ubiquitin-mediated proteolytic pathway: mechanisms of action and cellular physiology. Biol Chem Hoppe Seyler. 1994;375(9):565–81.

    Article  CAS  PubMed  Google Scholar 

  7. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–47.

    Article  CAS  PubMed  Google Scholar 

  8. Movilli E, Viola BF, Camerini C, Mazzola G, Cancarini GC. Correction of metabolic acidosis on serum albumin and protein catabolism in hemodialysis patients. J Ren Nutr. 2009;19(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  9. Reaich D, Channon SM, Scrimgeour CM, Daley SE, Wilkinson R, Goodship TH. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation. Am J Physiol. 1993;265(2 Pt 1):E230–5.

    CAS  PubMed  Google Scholar 

  10. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. England BK, Chastain JL, Mitch WE. Abnormalities in protein synthesis and degradation induced by extracellular pH in BC3H1 myocytes. Am J Physiol. 1991;260(2 Pt 1):C277–82.

    CAS  PubMed  Google Scholar 

  12. Raj DS, Dominic EA, Pai A, Osman F, Morgan M, Pickett G, et al. Skeletal muscle, cytokines, and oxidative stress in end-stage renal disease. Kidney Int. 2005;68(5):2338–44.

    Article  CAS  PubMed  Google Scholar 

  13. Raj DS, Sun Y, Tzamaloukas AH. Hypercatabolism in dialysis patients. Curr Opin Nephrol Hypertens. 2008;17(6):589–94.

    Article  CAS  PubMed  Google Scholar 

  14. Workeneh BT, Mitch WE. Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr. 2010;91(4):1128S–32.

    Article  CAS  PubMed  Google Scholar 

  15. Lowell BB, Ruderman NB, Goodman MN. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem J. 1986;234(1):237–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ciechanover A. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg Med Chem. 2013;21(12):3400–10.

    Article  CAS  PubMed  Google Scholar 

  17. Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol. 2008;23(4):527–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  19. Lee SW. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. J Am Soc Nephrol. 2004;15(6):1537–45.

    Article  CAS  PubMed  Google Scholar 

  20. Galasso G, De Rosa R, Piscione F, Iaccarino G, Vosa C, Sorriento D, et al. Myocardial expression of FOXO3a-Atrogin-1 pathway in human heart failure. Eur J Heart Fail. 2010;12(12):1290–6.

    Article  CAS  PubMed  Google Scholar 

  21. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest. 2004;113(1):115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franch HA, Raissi S, Wang X, Zheng B, Bailey JL, Price SR. Acidosis impairs insulin receptor substrate-1-associated phosphoinositide 3-kinase signaling in muscle cells: consequences on proteolysis. Am J Physiol Renal Physiol. 2004;287(4):F700–6.

    Article  CAS  PubMed  Google Scholar 

  24. Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J Am Soc Nephrol. 2006;17(5):1388–94.

    Article  CAS  PubMed  Google Scholar 

  25. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest. 1996;97(6):1447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeFronzo RA, Beckles AD. Glucose intolerance following chronic metabolic acidosis in man. Am J Physiol. 1979;236(4):E328–34.

    CAS  PubMed  Google Scholar 

  27. Mak RH. Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int. 1998;54(2):603–7.

    Article  CAS  PubMed  Google Scholar 

  28. Reaich D, Graham KA, Channon SM, Hetherington C, Scrimgeour CM, Wilkinson R, et al. Insulin-mediated changes in PD and glucose uptake after correction of acidosis in humans with CRF. Am J Physiol. 1995;268(1 Pt 1):E121–6.

    CAS  PubMed  Google Scholar 

  29. Graham KA, Reaich D, Channon SM, Downie S, Gilmour E, Passlick-Deetjen J, et al. Correction of acidosis in CAPD decreases whole body protein degradation. Kidney Int. 1996;49(5):1396–400.

    Article  CAS  PubMed  Google Scholar 

  30. Lim VS, Bier DM, Flanigan MJ, Sum-Ping ST. The effect of hemodialysis on protein metabolism. A leucine kinetic study. J Clin Invest. 1993;91(6):2429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pickering WP, Price SR, Bircher G, Marinovic AC, Mitch WE, Walls J. Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int. 2002;61(4):1286–92.

    Article  CAS  PubMed  Google Scholar 

  32. Reaich D, Channon SM, Scrimgeour CM, Goodship TH. Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. Am J Physiol. 1992;263(4 Pt 1):E735–9.

    CAS  PubMed  Google Scholar 

  33. Frassetto L, Morris Jr RC, Sebastian A. Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. J Clin Endocrinol Metab. 1997;82(1):254–9.

    Article  CAS  PubMed  Google Scholar 

  34. Stein A, Moorhouse J, Iles-Smith H, Baker F, Johnstone J, James G, et al. Role of an improvement in acid–base status and nutrition in CAPD patients. Kidney Int. 1997;52(4):1089–95.

    Article  CAS  PubMed  Google Scholar 

  35. Szeto CC. Oral sodium bicarbonate for the treatment of metabolic acidosis in peritoneal dialysis patients: a randomized placebo-control trial. J Am Soc Nephrol. 2003;14(8):2119–26.

    Article  CAS  PubMed  Google Scholar 

  36. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Street D, Nielsen JJ, Bangsbo J, Juel C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol. 2005;566(Pt 2):481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol. 2006;101(3):918–25.

    Article  CAS  PubMed  Google Scholar 

  39. Abramowitz MK, Hostetter TH, Melamed ML. Association of serum bicarbonate levels with gait speed and quadriceps strength in older adults. Am J Kidney Dis. 2011;58(1):29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abramowitz MK, Hostetter TH, Melamed ML. Lower serum bicarbonate and a higher anion gap are associated with lower cardiorespiratory fitness in young adults. Kidney Int. 2012;81(10):1033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yenchek R, Ix JH, Rifkin DE, Shlipak MG, Sarnak MJ, Garcia M, et al. Association of serum bicarbonate with incident functional limitation in older adults. Clin J Am Soc Nephrol. 2014;9(12):2111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abramowitz MK, Melamed ML, Bauer C, Raff AC, Hostetter TH. Effects of oral sodium bicarbonate in patients with CKD. Clin J Am Soc Nephrol. 2013;8(5):714–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dawson-Hughes B, Castaneda-Sceppa C, Harris SS, Palermo NJ, Cloutier G, Ceglia L, et al. Impact of supplementation with bicarbonate on lower-extremity muscle performance in older men and women. Osteoporos Int. 2010;21(7):1171–9. A journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  45. Chen W, Abramowitz MK. Treatment of metabolic acidosis in patients with CKD. Am J Kidney Dis. 2014;63(2):311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  47. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8(3):371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B. Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab. 2009;94(2):645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kleger GR, Turgay M, Imoberdorf R, McNurlan MA, Garlick PJ, Ballmer PE. Acute metabolic acidosis decreases muscle protein synthesis but not albumin synthesis in humans. Am J Kidney Dis. 2001;38(6):1199–207.

    Article  CAS  PubMed  Google Scholar 

  50. McNaughton L, Backx K, Palmer G, Strange N. Effects of chronic bicarbonate ingestion on the performance of high-intensity work. Eur J Appl Physiol Occup Physiol. 1999;80(4):333–6.

    Article  CAS  PubMed  Google Scholar 

  51. Roberts RG, Redfern CP, Graham KA, Bartlett K, Wilkinson R, Goodship TH. Sodium bicarbonate treatment and ubiquitin gene expression in acidotic human subjects with chronic renal failure. Eur J Clin Invest. 2002;32(7):488–92.

    Article  CAS  PubMed  Google Scholar 

  52. Verove C, Maisonneuve N, El Azouzi A, Boldron A, Azar R. Effect of the correction of metabolic acidosis on nutritional status in elderly patients with chronic renal failure. J Ren Nutr. 2002;12(4):224–8.

    Article  PubMed  Google Scholar 

  53. Papadoyannakis NJ, Stefanidis CJ, McGeown M. The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. Am J Clin Nutr. 1984;40(3):623–7.

    CAS  PubMed  Google Scholar 

  54. Graham KA, Reaich D, Channon SM, Downie S, Goodship TH. Correction of acidosis in hemodialysis decreases whole-body protein degradation. J Am Soc Nephrol. 1997;8(4):632–7.

    CAS  PubMed  Google Scholar 

  55. Lim VS, Yarasheski KE, Flanigan MJ. The effect of uraemia, acidosis, and dialysis treatment on protein metabolism: a longitudinal leucine kinetic study. Nephrol Dial Transplant. 1998;13(7):1723–30.

    Article  CAS  PubMed  Google Scholar 

  56. Lofberg E, Gutierrez A, Anderstam B, Wernerman J, Bergstrom J, Price SR, et al. Effect of bicarbonate on muscle protein in patients receiving hemodialysis. Am J Kidney Dis. 2006;48(3):419–29.

    Article  PubMed  Google Scholar 

  57. Bossola M, Giungi S, Tazza L, Luciani G. Long-term oral sodium bicarbonate supplementation does not improve serum albumin levels in hemodialysis patients. Nephron Clin Pract. 2007;106(1):c51–6.

    Article  CAS  PubMed  Google Scholar 

  58. Ruggieri F, Caso G, Wegmann M, McNurlan MA, Wahl C, Imoberdorf R, et al. Does increasing blood pH stimulate protein synthesis in dialysis patients? Nephron Clin Pract. 2009;112(4):c276–83.

    Article  CAS  PubMed  Google Scholar 

  59. Wiederkehr MR, Kalogiros J, Krapf R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol Dial Transplant. 2004;19(5):1190–7.

    Article  CAS  PubMed  Google Scholar 

  60. Williams AJ, Dittmer ID, McArley A, Clarke J. High bicarbonate dialysate in haemodialysis patients: effects on acidosis and nutritional status. Nephrol Dial Transplant. 1997;12(12):2633–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Abramowitz M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amodu, A., Abramowitz, M.K. (2016). Effects of Metabolic Acidosis on Skeletal Muscle. In: E. Wesson, D. (eds) Metabolic Acidosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3463-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3463-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3461-4

  • Online ISBN: 978-1-4939-3463-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics