Skip to main content

Overview of Vaccine Adjuvants: Introduction, History, and Current Status

  • Protocol
  • First Online:
Vaccine Adjuvants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1494))

Abstract

Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The decade of vaccines—a plan to extend vaccine benefits to the whole world. December 18, 2012 November 5, 2015]. http://www.niaid.nih.gov/topics/vaccines/Pages/decadeVaccines.aspx

  2. Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Baylor Univ Med Cent) 18(1):21–25

    Google Scholar 

  3. Gross CP, Sepkowitz KA (1998) The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered. Int J Infect Dis 3(1):54–60

    Article  CAS  PubMed  Google Scholar 

  4. Hilleman MR (2000) Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine 18(15):1436–1447

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9

    Article  CAS  PubMed  Google Scholar 

  6. Pashine A, Valiante NM, Ulmer JB (2005) Targeting the innate immune response with improved vaccine adjuvants. Nat Med 11(4 Suppl):S63–S68

    Article  CAS  PubMed  Google Scholar 

  7. Kinney RM et al (1993) Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein. J Virol 67(3):1269–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haynes LM (2013) Progress and challenges in RSV prophylaxis and vaccine development. J Infect Dis 208(Suppl 3):S177–S183

    Article  PubMed  Google Scholar 

  9. Kallerup R, Foged C (2015) Classification of vaccines. In: Foged C et al (eds) Subunit vaccine delivery. Springer, New York, pp 15–29

    Google Scholar 

  10. Shah R, Brito L, O’Hagan D, Amiji M (2014) Emulsions as vaccine adjuvants. In: Foged C, Rades T, Perrie Y, Hook S (eds) Subunit vaccine delivery. Springer, New York

    Google Scholar 

  11. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schijns VE, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10(4):539–550

    Article  CAS  PubMed  Google Scholar 

  13. Vesikari T et al (2011) Oil-in-water emulsion adjuvant with influenza vaccine in young children. N Engl J Med 365(15):1406–1416

    Article  CAS  PubMed  Google Scholar 

  14. Roteli-Martins CM et al (2012) Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine. Hum Vaccin Immunother 8(3):390–397

    Article  PubMed  Google Scholar 

  15. Brito LA, O’Hagan DT (2014) Designing and building the next generation of improved vaccine adjuvants. J Control Release 190: 563–579

    Article  CAS  PubMed  Google Scholar 

  16. Brito LA, Malyala P, O'Hagan DT (2013) Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol 25(2):130–145

    Article  CAS  PubMed  Google Scholar 

  17. Rambe DS et al (2015) Safety and mechanism of action of licensed vaccine adjuvants. Int Curr Pharma J 4(8):420–431

    Article  Google Scholar 

  18. FDA approves first seasonal influenza vaccine containing an adjuvant. 2015 [cited 2016 3/18/2016]. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm474295.htm

  19. Glenny A, Pope CG, Waddington H, Wallace U (1926) Immunological notes XVII to XXIV. J Pathol 29:31–40

    Article  CAS  Google Scholar 

  20. Hassett KJ et al (2013) Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization. Eur J Pharm Biopharm 85(2):279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero Méndez IZ et al (2007) Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25(5):825–833

    Article  PubMed  Google Scholar 

  22. al-Shakhshir R et al (1994) Effect of protein adsorption on the surface charge characteristics of aluminium-containing adjuvants. Vaccine 12(5):472–474

    Article  CAS  PubMed  Google Scholar 

  23. Seeber SJ, White JL, Hem SL (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9(3):201–203

    Article  CAS  PubMed  Google Scholar 

  24. Noe SM et al (2010) Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine 28(20):3588–3594

    Article  CAS  PubMed  Google Scholar 

  25. Marichal T et al (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17(8):996–1002

    Article  CAS  PubMed  Google Scholar 

  26. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oleszycka E, Lavelle EC (2014) Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol 28:1–5

    Article  CAS  PubMed  Google Scholar 

  28. Traquina P et al (1996) MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis 174(6):1168–1175

    Article  CAS  PubMed  Google Scholar 

  29. Granoff DM et al (1997) MF59 adjuvant enhances antibody responses of infant baboons immunized with Haemophilus influenzae type b and Neisseria meningitidis group C oligosaccharide-CRM197 conjugate vaccine. Infect Immun 65(5):1710–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcon N, Chomez P, Van Mechelen M (2007) GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 6(5):723–739

    Article  CAS  PubMed  Google Scholar 

  31. Didierlaurent AM et al (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183(10):6186–6197

    Article  CAS  PubMed  Google Scholar 

  32. Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 65(20):3231–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen D et al (2009) Characterization of the freeze sensitivity of a hepatitis B vaccine. Hum Vaccin 5(1):26–32

    Article  PubMed  Google Scholar 

  34. Salnikova MS et al (2012) Influence of formulation pH and suspension state on freezing-induced agglomeration of aluminum adjuvants. J Pharm Sci 101(3):1050–1062

    Article  CAS  PubMed  Google Scholar 

  35. Braun LJ et al (2009) Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants. Vaccine 27(1): 72–79

    Article  CAS  PubMed  Google Scholar 

  36. Hassett KJ et al (2015) Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants. J Pharm Sci 104(2):627–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clausi AL et al (2009) Influence of protein conformation and adjuvant aggregation on the effectiveness of aluminum hydroxide adjuvant in a model alkaline phosphatase vaccine. J Pharm Sci 98(1):114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clausi A et al (2008) Influence of particle size and antigen binding on effectiveness of aluminum salt adjuvants in a model lysozyme vaccine. J Pharm Sci 97(12):5252–5262

    Article  CAS  PubMed  Google Scholar 

  39. Lindblad EB (2000) Freund’s adjuvant. In: O’Hagan D (ed) Vaccine adjuvants. Humana Press, Totowa, NJ, pp 49–64

    Chapter  Google Scholar 

  40. Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine 19(17-19):2666–2672

    Article  CAS  PubMed  Google Scholar 

  41. Hilleman MR (1966) Critical appraisal of emulsified oil adjuvants applied to viral vaccines. Prog Med Virol 8:131–182

    CAS  PubMed  Google Scholar 

  42. Murray R, Cohen P, Hardegree MC (1972) Mineral oil adjuvants: biological and chemical studies. Ann Allergy 30(3):146–151

    CAS  PubMed  Google Scholar 

  43. Stills HF Jr (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46(3):280–293

    Article  CAS  PubMed  Google Scholar 

  44. Stuewart-Tull DE et al (1976) Immunosuppressive effect in mycobacterial adjuvant emulsions of mineral oils containing low molecular weight hydrocarbons. Int Arch Allergy Appl Immunol 52(1–4):118–128

    Article  CAS  PubMed  Google Scholar 

  45. Whitehouse MW et al (1974) Freund’s adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition. Immunology 27(2):311–330

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodríguez PC, Rodríguez G, González G, Lage A (2010) Clinical development and perspectives of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy. MEDICC Rev 12(1):17–23

    PubMed  Google Scholar 

  47. O’Hagan DT et al (2013) The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 12(1): 13–30

    Article  PubMed  Google Scholar 

  48. O’Hagan DT et al (2011) MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev Vaccines 10(4):447–462

    Article  PubMed  Google Scholar 

  49. Schultze V et al (2008) Safety of MF59 adjuvant. Vaccine 26(26):3209–3222

    Article  CAS  PubMed  Google Scholar 

  50. Manmohan S (2007) Vaccine adjuvants and delivery systems. Wiley, Hoboken, NJ, pp 115–129

    Google Scholar 

  51. O’Hagan DT et al (2012) The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30(29):4341–4348

    Article  PubMed  Google Scholar 

  52. Seubert A et al (2008) The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 180(8):5402–5412

    Article  CAS  PubMed  Google Scholar 

  53. Moris P et al (2011) H5N1 influenza vaccine formulated with AS03A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J Clin Immunol 31(3):443–454

    Article  CAS  PubMed  Google Scholar 

  54. Garcon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an adjuvant system containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11(3):349–366

    Article  CAS  PubMed  Google Scholar 

  55. Morel S et al (2011) Adjuvant system AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29(13):2461–2473

    Article  CAS  PubMed  Google Scholar 

  56. Garcon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10(4):471–486

    Article  PubMed  Google Scholar 

  57. Kensil CR, Kammer R (1998) QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 7(9):1475–1482

    Article  CAS  PubMed  Google Scholar 

  58. Fox CB et al (2013) TLR4 ligand formulation causes distinct effects on antigen-specific cell-mediated and humoral immune responses. Vaccine 31(49):5848–5855

    Article  CAS  PubMed  Google Scholar 

  59. Coler RN et al (2011) Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One 6(1):e16333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fox CB (2009) Squalene emulsions for parenteral vaccine and drug delivery. Molecules 14(9):3286–3312

    Article  CAS  PubMed  Google Scholar 

  61. Copland MJ et al (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83(2):97–105

    Article  CAS  PubMed  Google Scholar 

  62. Felnerova D et al (2004) Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 15(6):518–529

    Article  CAS  PubMed  Google Scholar 

  63. Pichyangkul S et al (2004) Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 22(29–30): 3831–3840

    Article  CAS  PubMed  Google Scholar 

  64. Davidsen J et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718(1-2):22–31

    Article  CAS  PubMed  Google Scholar 

  65. Banerji B, Alving CR (1979) Lipid A from endotoxin: antigenic activities of purified fractions in liposomes. J Immunol 123(6): 2558–2562

    CAS  PubMed  Google Scholar 

  66. Christensen D et al (2007) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 6(5):785–796

    Article  CAS  PubMed  Google Scholar 

  67. van Dissel JT et al (2014) A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 32(52): 7098–7107

    Article  PubMed  Google Scholar 

  68. Morein B et al (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308(5958):457–460

    Article  CAS  PubMed  Google Scholar 

  69. Drane D et al (2007) ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines 6(5):761–772

    Article  CAS  PubMed  Google Scholar 

  70. Pearse MJ, Drane D (2005) ISCOMATRIX® adjuvant for antigen delivery. Adv Drug Deliv Rev 57(3):465–474

    Article  CAS  PubMed  Google Scholar 

  71. Schnurr M et al (2009) ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol 182(3): 1253–1259

    Article  CAS  PubMed  Google Scholar 

  72. Didierlaurent AM et al (2014) Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells. J Immunol 193(4):1920–1930

    Article  CAS  PubMed  Google Scholar 

  73. Preis I, Langer RS (1979) A single-step immunization by sustained antigen release. J Immunol Methods 28(1–2):193–197

    Article  CAS  PubMed  Google Scholar 

  74. O’Hagan DT et al (1991) Biodegradable microparticles as controlled release antigen delivery systems. Immunology 73(2):239–242

    PubMed  PubMed Central  Google Scholar 

  75. Eldridge JH et al (1991) Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 59(9):2978–2986

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jain S, O’Hagan DT, Singh M (2011) The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 10(12):1731–1742

    Article  CAS  PubMed  Google Scholar 

  77. Wendorf J et al (2008) A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin 4(1):44–49

    Article  CAS  PubMed  Google Scholar 

  78. Kazzaz J et al (2006) Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 110(3):566–573

    Article  CAS  PubMed  Google Scholar 

  79. Shah RR et al (2014) The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond) 9(17):2671–2681

    Article  CAS  Google Scholar 

  80. Fox CB et al (2011) Immunomodulatory and physical effects of oil composition in vaccine adjuvant emulsions. Vaccine 29(51):9563–9572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shah RR et al (2015) The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance. J Pharm Sci 104(4):1352–1361

    Article  CAS  PubMed  Google Scholar 

  82. Calabro S et al (2011) Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29(9):1812–1823

    Article  CAS  PubMed  Google Scholar 

  83. Lal H et al (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372(22):2087–2096

    Article  PubMed  Google Scholar 

  84. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45

    Google Scholar 

  85. Garcon N et al (2011) Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs 25(4):217–226

    Article  CAS  PubMed  Google Scholar 

  86. Eng NF et al (2013) The potential of 1018 ISS adjuvant in hepatitis B vaccines. Hum Vaccin Immunother 9(8):1661–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dynavax announces FDA acceptance for review of biologics license application and PDUFA action date for HEPLISAV-B(TM). 2016. http://investors.dynavax.com/releasedetail.cfm?ReleaseID=962813

  88. Melero I et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11(9):509–524

    Article  CAS  PubMed  Google Scholar 

  89. Update on phase III clinical trial of investigational MAGE-A3 antigen-specific cancer immunotherapeutic in non-small cell lung cancer. 2014 [cited 2016 3/18/2016]. https://us.gsk.com/en-us/media/press-releases/2014/update-on-phase-iii-clinical-trial-of-investigational-mage-a3-antigen-specific-cancer-immunotherapeutic-in-non-small-cell-lung-cancer/

  90. Wu TY, Singh M et al (2014) Rational design of small molecules as vaccine adjuvants. Sci Transl Med 6(263):263ra160

    Article  PubMed  Google Scholar 

  91. Knipe DM et al (2014) Summary and recommendations from a National Institute of Allergy and Infectious Diseases (NIAID) workshop on “Next Generation Herpes Simplex Virus Vaccines”. Vaccine 32(14):1561–1562

    Article  PubMed  PubMed Central  Google Scholar 

  92. Skoberne M et al (2013) An adjuvanted herpes simplex virus 2 subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in Guinea pigs. J Virol 87(7): 3930–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nohynek H et al (2012) AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the Incidence of Childhood Narcolepsy in Finland. PLoS One 7(3):e33536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Winstone AM et al (2014) Clinical features of narcolepsy in children vaccinated with AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine in England. Dev Med Child Neurol 56(11):1117–1123

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ahmed SS et al (2015) Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med 7(294):294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Brito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shah, R.R., Hassett, K.J., Brito, L.A. (2017). Overview of Vaccine Adjuvants: Introduction, History, and Current Status. In: Fox, C. (eds) Vaccine Adjuvants. Methods in Molecular Biology, vol 1494. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6445-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6445-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6443-7

  • Online ISBN: 978-1-4939-6445-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics