Skip to main content

Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins

  • Protocol
  • First Online:
RNA Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1499))

Abstract

Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 106 to approximately 108 cells per shot, (3) high transfection efficiency (80–99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.

Kerstin F. Gerer, Stefanie Hoyer, Jan Dörrie, and Niels Schaft contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    Article  CAS  PubMed  Google Scholar 

  2. Schaft N, Dorrie J, Thumann P et al (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174:3087–3097

    Article  CAS  PubMed  Google Scholar 

  3. Dorrie J, Schaft N, Muller I et al (2008) Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol Immunother 57:467–477

    Article  PubMed  Google Scholar 

  4. Krug C, Wiesinger M, Abken H et al (2014) A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunol Immunother 63:999–1008

    Article  CAS  PubMed  Google Scholar 

  5. Strobel I, Berchtold S, Gotze A et al (2000) Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther 7:2028–2035

    Article  CAS  PubMed  Google Scholar 

  6. Van Tendeloo VF, Ponsaerts P, Lardon F et al (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56

    Article  PubMed  Google Scholar 

  7. Saeboe-Larssen S, Fossberg E, Gaudernack G (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 259:191–203

    Article  CAS  PubMed  Google Scholar 

  8. Schaft N, Wellner V, Wohn C et al (2013) CD8(+) T-cell priming and boosting: more antigen-presenting DC, or more antigen per DC? Cancer Immunol Immunother 62:1769–1780

    Article  CAS  PubMed  Google Scholar 

  9. Hoyer S, Gerer KF, Pfeiffer IA et al (2015) Electroporated antigen-encoding mRNA is not a danger signal to human mature monocyte-derived dendritic cells. J Immunol Res. ID 952184

    Google Scholar 

  10. Lundqvist A, Noffz G, Pavlenko M et al (2002) Nonviral and viral gene transfer into different subsets of human dendritic cells yield comparable efficiency of transfection. J Immunother 25:445–454

    Article  CAS  PubMed  Google Scholar 

  11. Van Lint S, Wilgenhof S, Heirman C et al (2014) Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol Immunother 63:959–967

    Article  PubMed  Google Scholar 

  12. Hofflin S, Prommersberger S, Uslu U et al (2015) Generation of CD8(+) T cells expressing two additional T-cell receptors (TETARs) for personalised melanoma therapy. Cancer Biol Ther 16:1323–1331

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hofmann C, Hofflin S, Huckelhoven A et al (2011) Human T cells expressing two additional receptors (TETARs) specific for HIV-1 recognize both epitopes. Blood 118:5174–5177

    Article  CAS  PubMed  Google Scholar 

  14. Erdmann M, Dorrie J, Schaft N et al (2007) Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection. J Immunother 30:663–674

    Article  CAS  PubMed  Google Scholar 

  15. Bloy N, Pol J, Aranda F et al (2014) Trial watch: dendritic cell-based anticancer therapy. Oncoimmunology 3:e963424

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Nuffel AM, Benteyn D, Wilgenhof S et al (2012) Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients. Mol Ther 20:1063–1074

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van Nuffel AM, Benteyn D, Wilgenhof S et al (2012) Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 61:1033–1043

    Article  PubMed  Google Scholar 

  18. Wilgenhof S, Van Nuffel AM, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456

    Article  CAS  PubMed  Google Scholar 

  19. Wilgenhof S, Corthals J, Van Nuffel AM et al (2015) Long-term clinical outcome of melanoma patients treated with messenger RNA-electroporated dendritic cell therapy following complete resection of metastases. Cancer Immunol Immunother 64:381–388

    Article  CAS  PubMed  Google Scholar 

  20. Amin A, Dudek AZ, Logan TF et al (2015) Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aarntzen EH, Schreibelt G, Bol K et al (2012) Vaccination with mRNA-electroporated dendritic cells induces robust tumor antigen-specific CD4+ and CD8+ T cells responses in stage III and IV melanoma patients. Clin Cancer Res 18:5460–5470

    Article  CAS  PubMed  Google Scholar 

  22. Bol KF, Mensink HW, Aarntzen EH et al (2014) Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am J Ophthalmol 158:939–947

    Article  CAS  PubMed  Google Scholar 

  23. Bol KF, Figdor CG, Aarntzen EH et al (2015) Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology 4:e1019197

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Tendeloo VF, Van de Velde A, Van Driessche A et al (2010) Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci U S A 107:13824–13829

    Google Scholar 

  26. Lesterhuis WJ, de Vries IJ, Schreibelt G et al (2010) Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 30:5091–5097

    PubMed  Google Scholar 

  27. Coosemans A, Vanderstraeten A, Tuyaerts S et al (2013) Wilms’ Tumor Gene 1 (WT1)-loaded dendritic cell immunotherapy in patients with uterine tumors: a phase I/II clinical trial. Anticancer Res 33:5495–5500

    CAS  PubMed  Google Scholar 

  28. Bigalke I, Honnashagen K, Lundby M et al (2015) A new generation of dendritic cells to improve cancer therapy shows prolonged progression-free survival in patients with solid tumors. [abstract 2516]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia (PA): AACR. Cancer Res 75:SY26-02-5568

    Google Scholar 

  29. Allard SD, De KB, de Goede AL et al (2012) A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 142:252–268

    Article  CAS  PubMed  Google Scholar 

  30. Van Gulck E, Vlieghe E, Vekemans M et al (2012) mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26:F1–F12

    Article  PubMed  Google Scholar 

  31. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biagi E, Marin V, Giordano Attianese GM et al (2007) Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica 92:381–388

    Article  PubMed  Google Scholar 

  33. Abken H, Hombach A, Heuser C et al (2002) Tuning tumor-specific T-cell activation: a matter of costimulation? Trends Immunol 23:240–245

    Article  CAS  PubMed  Google Scholar 

  34. Eshhar Z (2010) Adoptive cancer immunotherapy using genetically engineered designer T-cells: first steps into the clinic. Curr Opin Mol Ther 12:55–63

    CAS  PubMed  Google Scholar 

  35. Anurathapan U, Leen AM, Brenner MK, Vera JF (2013) Engineered T cells for cancer treatment. Cytotherapy 16(6):713–733

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bonini C, Brenner MK, Heslop HE, Morgan RA (2011) Genetic modification of T cells. Biol Blood Marrow Transplant 17:S15–S20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gill S, Kalos M (2013) T cell-based gene therapy of cancer. Transl Res 161:365–379

    Article  CAS  PubMed  Google Scholar 

  38. Wieczorek A, Uharek L (2013) Genetically modified T cells for the treatment of malignant disease. Transfus Med Hemother 40:388–402

    Article  PubMed  PubMed Central  Google Scholar 

  39. Park TS, Rosenberg SA, Morgan RA (2011) Treating cancer with genetically engineered T cells. Trends Biotechnol 29:550–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hombach A, Wieczarkowiecz A, Marquardt T et al (2001) Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 167:6123–6131

    Article  CAS  PubMed  Google Scholar 

  41. Kershaw MH, Westwood JA, Parker LL et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12:6106–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue S, Gillmore R, Downs A et al (2005) Exploiting T cell receptor genes for cancer immunotherapy. Clin Exp Immunol 139:167–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheadle EJ, Sheard V, Hombach AA et al (2012) Chimeric antigen receptors for T-cell based therapy. Methods Mol Biol 907:645–666

    Article  CAS  PubMed  Google Scholar 

  44. Lamers CH, Willemsen R, van Elzakker P et al (2011) Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117:72–82

    Article  CAS  PubMed  Google Scholar 

  45. Lamers CH, Sleijfer S, Vulto AG et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22

    Article  PubMed  Google Scholar 

  46. Morgan RA, Yang JC, Kitano M et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Birkholz K, Hombach A, Krug C et al (2009) Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 16:596–604

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Moon E, Carpenito C et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Almasbak H, Rian E, Hoel HJ et al (2011) Transiently redirected T cells for adoptive transfer. Cytotherapy 13:629–640

    Article  CAS  PubMed  Google Scholar 

  50. Barrett DM, Zhao Y, Liu X et al (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22:1575–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Riet T, Holzinger A, Dorrie J et al (2013) Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol 969:187–201

    Article  CAS  PubMed  Google Scholar 

  52. Beatty GL, Haas AR, Maus MV et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2:112–120

    Article  CAS  PubMed  Google Scholar 

  53. Maus MV, Haas AR, Beatty GL et al (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1:26–31

    Article  CAS  PubMed Central  Google Scholar 

  54. Prommersberger S, Hofflin S, Schuler-Thurner B et al (2015) A new method to monitor antigen-specific CD8 T cells, avoiding additional target cells and the restriction to human leukocyte antigen haplotype. Gene Ther 22(6):516–520

    Article  CAS  PubMed  Google Scholar 

  55. Pfeiffer IA, Hoyer S, Gerer KF et al (2014) Triggering of NF-kappaB in cytokine-matured human DCs generates superior DCs for T-cell priming in cancer immunotherapy. Eur J Immunol 44:3413–3428

    Article  CAS  PubMed  Google Scholar 

  56. Setz C, Friedrich M, Hahn S et al (2013) Just one position-independent lysine residue can direct MelanA into proteasomal degradation following N-terminal fusion of ubiquitin. PLoS One 8, e55567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofmann C, Harrer T, Kubesch V et al (2008) Generation of HIV-1-specific T cells by electroporation of T-cell receptor RNA. AIDS 22:1577–1582

    Article  CAS  PubMed  Google Scholar 

  58. Coughlin CM, Vance BA, Grupp SA, Vonderheide RH (2004) RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood 103:2046–2054

    Article  CAS  PubMed  Google Scholar 

  59. Van den Bosch GA, Van Gulck E, Ponsaerts P et al (2006) Simultaneous activation of viral antigen-specific memory CD4+ and CD8+ T-cells using mRNA-electroporated CD40-activated autologous B-cells. J Immunother 29:512–523

    Article  PubMed  Google Scholar 

  60. Holtkamp S, Kreiter S, Selmi A et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017

    Article  CAS  PubMed  Google Scholar 

  61. Etschel JK, Huckelhoven AG, Hofmann C et al (2012) HIV-1 mRNA electroporation of PBMC: A simple and efficient method to monitor T-cell responses against autologous HIV-1 in HIV-1-infected patients. J Immunol Methods 380(1-2):40–55

    Article  CAS  PubMed  Google Scholar 

  62. Van Camp K, Cools N, Stein B et al (2010) Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods 354:1–10

    Article  PubMed  Google Scholar 

  63. Birkholz K, Hofmann C, Hoyer S et al (2009) A fast and robust method to clone and functionally validate T-cell receptors. J Immunol Methods 346:45–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gerold Schuler and Beatrice Schuler-Thurner for their support during the establishment and improvement of mRNA electroporation. Furthermore, we thank the former and the current members of the RNA-group and our collaborators, who participated in the establishment of the mRNA electroporation protocol, or its adaption and improvement: Peter Thumann, Verena Wellner, Ina Müller, Stefanie Baumann, Tanja Moritz, Manuel Wiesinger, Michael Erdmann, Katrin Birkholz, Christian Hofmann, Thomas Harrer, Christian Wohn, Isabell Pfeiffer, Christian Krug, Sabrina Prommersberger, and Sandra Höfflin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Schaft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gerer, K.F., Hoyer, S., Dörrie, J., Schaft, N. (2017). Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. In: Kramps, T., Elbers, K. (eds) RNA Vaccines. Methods in Molecular Biology, vol 1499. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6481-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6481-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6479-6

  • Online ISBN: 978-1-4939-6481-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics