Skip to main content

Predicting Functional MicroRNA-mRNA Interactions

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

MicroRNAs (miRNAs) are small RNA molecules that play key regulatory roles in general biological processes and disease pathogenesis. These small RNA molecules interact with their target mRNAs to induce mRNA degradation and/or inhibit the translation of mRNAs into proteins. Therefore, identifying miRNA targets is an essential step to fully understand the regulatory effects of miRNAs. Here, we describe a regularized regression approach that integrates the sequence information with the miRNA and mRNA expression profiles for detecting miRNA targets. This method takes into account the full spectrum of gene sequence features of miRNA targets, including the thermodynamic stability, the accessibility energy, and the context features of the target sites,. Given these sequence features for each putative miRNA-mRNA interaction and their expression values, this model is able to quantify the down-regulation effect of each miRNA on its targets while simultaneously estimating the contribution of each sequence feature for predicting functional miRNA-mRNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  3. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  4. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  CAS  PubMed  Google Scholar 

  5. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  7. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  9. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  11. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G et al (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295

    Article  PubMed  PubMed Central  Google Scholar 

  12. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  CAS  PubMed  Google Scholar 

  13. Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu W, San Lucas A, Wang Z, Liu Y (2014) identifying microRNA targets in different gene regions. BMC Bioinformatics 15:11

    Article  Google Scholar 

  15. Xu W, Wang Z, Liu Y (2014) The characterization of microRNA-mediated gene regulation as impacted by both target site location and seed match type. PLoS One 9:e108260

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  17. Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 14:550–563

    Article  CAS  PubMed  Google Scholar 

  18. Muniategui A, Nogales-Cadenas R, Vazquez M, Aranguren XL, Agirre X, Luttun A et al (2012) Quantification of miRNA-mRNA interactions. PLoS One 7:e30766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu Y, Zhou Y, Qu W, Deng M, Zhang C (2011) A lasso regression model for the construction of microRNA-target regulatory networks. Bioinformatics 27:2406–2413

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Xu W, Liu Y (2015) Integrating full spectrum of sequence features into predicting functional microRNA-mRNA interactions. Bioinformatics 31:3529–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85

    Article  CAS  PubMed  Google Scholar 

  22. Gruber AR, Bernhart SH, Lorenz R (2015) The ViennaRNA web services. Methods Mol Biol 1269:307–326

    Article  CAS  PubMed  Google Scholar 

  23. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao S, Qin H, Deng HW, Wang YP (2014) A Unified sparse representation for sequence variant identification for complex traits. Genet Epidemiol 38:671–679

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Xu W, San Lucas FA, Liu Y (2013) Incorporating prior knowledge into gene network study. Bioinformatics 29:2633–2640

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21:3940–3941

    Article  CAS  PubMed  Google Scholar 

  27. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M et al (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98:15149–15154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhuang X, Li Z, Lin H, Gu L, Lin Q, Lu Z et al (2015) Integrated miRNA and mRNA expression profiling to identify mRNA targets of dysregulated miRNAs in non-obstructive azoospermia. Sci Rep 5:7922

    Article  PubMed  PubMed Central  Google Scholar 

  29. Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work is supported in part by NIH grant R01 LM010022 and the seed grant from the University of Texas Health Science Center at Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, Z., Liu, Y. (2017). Predicting Functional MicroRNA-mRNA Interactions. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics