Skip to main content

IL-9: Function, Sources, and Detection

  • Protocol
  • First Online:
Th9 Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

IL-9 is a pleiotropic cytokine produced in different amounts by a wide variety of cells including mast cells, NKT cells, Th2, Th17, Treg, ILC2, and Th9 cells. Th9 cells are considered to be the main CD4+ T cells that produce IL-9. IL-9 exerts its effects on multiple types of cells and different tissues. To date, its main role has been found in the immune responses against parasites and pathogenesis of allergic diseases such as asthma and bronchial hyperreactivity. Additionally, it induces the proliferation of hematologic neoplasias, including Hodgkin’s lymphoma in humans. However, IL-9 also has antitumor properties in solid tumors such as melanoma. The objective of this review is to describe IL-9, its function, sources, and methods of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noelle RJ, Nowak EC (2010) Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 10(10):683–687. doi:10.1038/nri2848

    Article  CAS  PubMed  Google Scholar 

  2. Renauld JC, Goethals A, Houssiau F, Van Roost E, Van Snick J (1990) Cloning and expression of a cDNA for the human homolog of mouse T cell and mast cell growth factor P40. Cytokine 2(1):9–12

    Article  CAS  PubMed  Google Scholar 

  3. Nicolaides NC, Holroyd KJ, Ewart SL, Eleff SM, Kiser MB, Dragwa CR, Sullivan CD, Grasso L, Zhang LY, Messler CJ, Zhou T, Kleeberger SR, Buetow KH, Levitt RC (1997) Interleukin 9: a candidate gene for asthma. Proc Natl Acad Sci U S A 94(24):13175–13180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mock BA, Krall M, Kozak CA, Nesbitt MN, McBride OW, Renauld JC, Van Snick J (1990) IL9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics 31(4):265–270

    Article  CAS  PubMed  Google Scholar 

  5. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252(1):104–115. doi:10.1111/imr.12028

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perumal NB, Kaplan MH (2011) Regulating IL-9 transcription in T helper cells. Trends Immunol 32(4):146–150. doi:10.1016/j.it.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Demoulin JB, Renauld JC (1998) Signalling by cytokines interacting with the interleukin-2 receptor gamma chain. Cytokines Cell Mol Ther 4(4):243–256

    CAS  PubMed  Google Scholar 

  8. Knoops L, Renauld JC (2004) IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22(4):207–215. doi:10.1080/08977190410001720879

    Article  CAS  PubMed  Google Scholar 

  9. Van Snick J, Goethals A, Renauld JC, Van Roost E, Uyttenhove C, Rubira MR, Moritz RL, Simpson RJ (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169(1):363–368

    Article  CAS  PubMed  Google Scholar 

  10. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A 85(18):6934–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmitt E, Van Brandwijk R, Van Snick J, Siebold B, Rude E (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19(11):2167–2170. doi:10.1002/eji.1830191130

    Article  CAS  PubMed  Google Scholar 

  12. Stassen M, Schmitt E, Bopp T (2012) From interleukin-9 to T helper 9 cells. Ann N Y Acad Sci 1247:56–68. doi:10.1111/j.1749-6632.2011.06351.x

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S, Kuhn R, Muller W, Palm N, Rude E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153(9):3989–3996

    CAS  PubMed  Google Scholar 

  14. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  15. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol (12):1347–1355. doi:10.1038/ni.1677

  16. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, Elyaman W, Khoury SJ, Kuchroo VK, Baecher-Allan C, Hafler DA (2010) TGF-beta induces IL-9 production from human Th17 cells. J Immunol 185(1):46–54. doi:10.4049/jimmunol.1000356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stassen M, Arnold M, Hultner L, Muller C, Neudorfl C, Reineke T, Schmitt E (2000) Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J Immunol 164(11):5549–5555

    Article  CAS  PubMed  Google Scholar 

  18. Lauwerys BR, Garot N, Renauld JC, Houssiau FA (2000) Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165(4):1847–1853

    Article  CAS  PubMed  Google Scholar 

  19. Nagato T, Kobayashi H, Kishibe K, Takahara M, Ogino T, Ishii H, Oikawa K, Aoki N, Sato K, Kimura S, Shimizu N, Tateno M, Harabuchi Y (2005) Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients. Clin Cancer Res 11(23):8250–8257. doi:10.1158/1078-0432.ccr-05-1426

    Article  CAS  PubMed  Google Scholar 

  20. Houssiau FA, Renauld JC, Stevens M, Lehmann F, Lethe B, Coulie PG, Van Snick J (1993) Human T cell lines and clones respond to IL-9. J Immunol 150(7):2634–2640

    CAS  PubMed  Google Scholar 

  21. Hultner L, Druez C, Moeller J, Uyttenhove C, Schmitt E, Rude E, Dormer P, Van Snick J (1990) Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 20(6):1413–1416. doi:10.1002/eji.1830200632

    Article  CAS  PubMed  Google Scholar 

  22. Yang YC, Ricciardi S, Ciarletta A, Calvetti J, Kelleher K, Clark SC (1989) Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74(6):1880–1884

    CAS  PubMed  Google Scholar 

  23. Temann UA, Laouar Y, Eynon EE, Homer R, Flavell RA (2007) IL9 leads to airway inflammation by inducing IL13 expression in airway epithelial cells. Int Immunol 19(1):1–10. doi:10.1093/intimm/dxl117

    Article  CAS  PubMed  Google Scholar 

  24. Zhao P, Xiao X, Ghobrial RM, Li XC (2013) IL-9 and Th9 cells: progress and challenges. Int Immunol 25(10):547–551. doi:10.1093/intimm/dxt039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones CP, Gregory LG, Causton B, Campbell GA, Lloyd CM (2012) Activin A and TGF-beta promote T(H)9 cell-mediated pulmonary allergic pathology. J Allergy Clin Immunol 129(4):1000–1010.e1003. doi:10.1016/j.jaci.2011.12.965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xing J, Wu Y, Ni B (2011) Th9: a new player in asthma pathogenesis? J Asthma 48(2):115–125. doi:10.3109/02770903.2011.554944

    Article  CAS  PubMed  Google Scholar 

  27. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202. doi:10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  28. Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, Jetten AM, Khoury SJ, Fuhlbrigge RC, Kuchroo VK, Clark RA, Kupper TS (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18(8):1248–1253. doi:10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faulkner H, Humphreys N, Renauld JC, Van Snick J, Grencis R (1997) Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol 27(10):2536–2540. doi:10.1002/eji.1830271011

    Article  CAS  PubMed  Google Scholar 

  30. Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA (2000) IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13(4):573–583

    Article  CAS  PubMed  Google Scholar 

  31. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442(7106):997–1002. doi:10.1038/nature05010

    Article  CAS  PubMed  Google Scholar 

  32. Yao W, Tepper RS, Kaplan MH (2011) Predisposition to the development of IL-9-secreting T cells in atopic infants. J Allergy Clin Immunol 128(6):1357–1360.e1355. doi:10.1016/j.jaci.2011.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ouyang H, Shi Y, Liu Z, Feng S, Li L, Su N, Lu Y, Kong S (2013) Increased interleukin9 and CD4+IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep 7(3):1031–1037. doi:10.3892/mmr.2013.1258

    CAS  PubMed  Google Scholar 

  34. Dantas AT, Marques CD, da Rocha Junior LF, Cavalcanti MB, Goncalves SM, Cardoso PR, Mariz Hde A, Rego MJ, Duarte AL, Pitta Ida R, Pitta MG (2015) Increased serum interleukin-9 levels in rheumatoid arthritis and systemic lupus erythematosus: pathogenic role or just an epiphenomenon? Dis Markers 2015:519638. doi:10.1155/2015/519638

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ciccia F, Guggino G, Rizzo A, Manzo A, Vitolo B, La Manna MP, Giardina G, Sireci G, Dieli F, Montecucco CM, Alessandro R, Triolo G (2015) Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford, UK). doi:10.1093/rheumatology/kev252

  36. Yanaba K, Yoshizaki A, Asano Y, Kadono T, Sato S (2011) Serum interleukin 9 levels are increased in patients with systemic sclerosis: association with lower frequency and severity of pulmonary fibrosis. J Rheumatol 38(10):2193–2197. doi:10.3899/jrheum.110268

    Article  CAS  PubMed  Google Scholar 

  37. Pan HF, Leng RX, Li XP, Zheng SG, Ye DQ (2013) Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev 24(6):515–522

    Article  CAS  PubMed  Google Scholar 

  38. Rojas-Zuleta WG, Vásquez G (2016) Th9 lymphocytes: a recent history from IL-9 to its potential role in rheumatic diseases. Autoimmun Rev 15(7):649–655. doi:10.1016/j.autrev.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  39. Gessner A, Blum H, Rollinghoff M (1993) Differential regulation of IL-9-expression after infection with leishmania major in susceptible and resistant mice. Immunobiology 189(5):419–435. doi:10.1016/s0171-2985(11)80414-6

    Article  CAS  PubMed  Google Scholar 

  40. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Monteiro M, Agua-Doce A, Almeida CF, Fonseca-Pereira D, Veiga-Fernandes H, Graca L (2015) IL-9 expression by invariant NKT cells is not imprinted during thymic development. J Immunol 195(7):3463–3471. doi:10.4049/jimmunol.1403170

    Article  CAS  PubMed  Google Scholar 

  42. Jones TG, Hallgren J, Humbles A, Burwell T, Finkelman FD, Alcaide P, Austen KF, Gurish MF (2009) Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. J Immunol 183(8):5251–5260. doi:10.4049/jimmunol.0901471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wiener Z, Falus A, Toth S (2004) IL-9 increases the expression of several cytokines in activated mast cells, while the IL-9-induced IL-9 production is inhibited in mast cells of histamine-free transgenic mice. Cytokine 26(3):122–130. doi:10.1016/j.cyto.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  44. Stassen M, Klein M, Becker M, Bopp T, Neudorfl C, Richter C, Heib V, Klein-Hessling S, Serfling E, Schild H, Schmitt E (2007) p38 MAP kinase drives the expression of mast cell-derived IL-9 via activation of the transcription factor GATA-1. Mol Immunol 44(5):926–933. doi:10.1016/j.molimm.2006.03.019

    Article  CAS  PubMed  Google Scholar 

  45. Chen C-Y, Lee J-B, Liu B, Ohta S, Wang P-Y, Kartashov Andrey V, Mugge L, Abonia JP, Barski A, Izuhara K, Rothenberg Marc E, Finkelman Fred D, Hogan Simon P, Wang Y-H (2015) Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43(4):788–802. doi:10.1016/j.immuni.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  47. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587–596

    Article  CAS  PubMed  Google Scholar 

  48. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, NY) 299(5609):1057–1061. doi:10.1126/science.1079490

    Article  CAS  Google Scholar 

  49. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133. doi:10.1016/j.cell.2006.07.035

    Article  CAS  PubMed  Google Scholar 

  50. Angkasekwinai P, Chang SH, Thapa M, Watarai H, Dong C (2010) Regulation of IL-9 expression by IL-25 signaling. Nat Immunol 11(3):250–256. doi:10.1038/ni.1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mikami N, Miyagi Y, Sueda K, Takatsuji M, Fukada S, Yamamoto H, Tsujikawa K (2013) Calcitonin gene-related peptide and cyclic adenosine 5′-monophosphate/protein kinase A pathway promote IL-9 production in Th9 differentiation process. J Immunol 190(8):4046–4055. doi:10.4049/jimmunol.1203102

    Article  CAS  PubMed  Google Scholar 

  52. Yao W, Zhang Y, Jabeen R, Nguyen ET, Wilkes DS, Tepper RS, Kaplan MH, Zhou B (2013) Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38(2):360–372. doi:10.1016/j.immuni.2013.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106(31):12885–12890. doi:10.1073/pnas.0812530106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Teige I, Birnir B, Issazadeh-Navikas S (2006) Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat Med 12(5):518–525. doi:10.1038/nm1402

    Article  CAS  PubMed  Google Scholar 

  55. Roediger B, Weninger W (2015) Group 2 innate lymphoid cells in the regulation of immune responses. Adv Immunol 125:111–154. doi:10.1016/bs.ai.2014.09.004

    Article  PubMed  Google Scholar 

  56. Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12(11):1071–1077. doi:10.1038/ni.2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilhelm C, Turner JE, Van Snick J, Stockinger B (2012) The many lives of IL-9: a question of survival? Nat Immunol 13(7):637–641. doi:10.1038/ni.2303

    Article  CAS  PubMed  Google Scholar 

  58. Spits H, Di Santo JP (2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12(1):21–27. doi:10.1038/ni.1962

    Article  CAS  PubMed  Google Scholar 

  59. Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210(13):2951–2965. doi:10.1084/jem.20130071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stordeur P, Poulin LF, Craciun L, Zhou L, Schandene L, de Lavareille A, Goriely S, Goldman M (2002) Cytokine mRNA quantification by real-time PCR. J Immunol Methods 259(1–2):55–64

    Article  CAS  PubMed  Google Scholar 

  61. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27(2–3):95–125. doi:10.1016/j.mam.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  62. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, CA) 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  63. Renauld JC, Van Snick J (2002) Measurement of mouse and human interleukin 9. Curr Protoc Immunol Chapter 6:Unit 6.13. doi:10.1002/0471142735.im0613s51

    PubMed  Google Scholar 

  64. Shevach EM (2001) Labeling cells in microtiter plates for determination of [3H]thymidine uptake. Curr Protoc Immunol Appendix 3:Appendix 3D. doi:10.1002/0471142735.ima03ds21

    CAS  PubMed  Google Scholar 

  65. Avanzi GC, Brizzi MF, Giannotti J, Ciarletta A, Yang YC, Pegoraro L, Clark SC (1990) M-07e human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J Cell Physiol 145(3):458–464. doi:10.1002/jcp.1041450310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilmer Gerardo Rojas-Zuleta M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rojas-Zuleta, W.G., Sanchez, E. (2017). IL-9: Function, Sources, and Detection. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics