Skip to main content

Cell Death and Survival Assays

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Heat shock proteins are well-known protectors from cell death. Cell death (in particular, apoptosis and necrosis) is accompanied by certain hallmarks manifested as specific alterations in cellular membranes, cytoplasm, nucleus, and mitochondria. Some of those hallmarks are easily detectable in situ and, therefore, they can be applied for the assessment of dying or dead cells. In turn, there are also signs of viable cells that include such features as normal functioning of their membranes and organelles, ability to proliferate, etc. This chapter describes several convenient methods for quantification of dead (apoptotic and necrotic) cells as well as methods for assessment of viable cells. We describe in detail methods of annexin V/propidium iodide (PI) staining, TUNEL assay, Hoechst/PI staining, caspase activation, MTS tetrazolium, lactate dehydrogenase (LDH) release, colony formation, and senescence assays, with the principles, advantages, and drawbacks of each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2(6):579–584

    Article  CAS  PubMed  Google Scholar 

  2. Beere HM (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 115(10):2633–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamashima T (2012) Hsp70.1 and related lysosomal factors for necrotic neuronal death. J Neurochem 120(4):477–494. https://doi.org/10.1111/j.1471-4159.2011.07596.x

    Article  CAS  PubMed  Google Scholar 

  4. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31(3):164–172

    Article  CAS  PubMed  Google Scholar 

  5. O’Callaghan-Sunol C, Gabai VL (2007) Involvement of heat shock proteins in protection of tumor cells from genotoxic stresses. In: Calderwood S, Sherman MY, Ciocca DR (eds) Heat shock proteins in cancer, 1st edn. Springer, New York, pp 169–190

    Chapter  Google Scholar 

  6. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    Article  CAS  PubMed  Google Scholar 

  7. Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197(1):63–93. https://doi.org/10.1016/0304-4157(94)90019-1

    Article  CAS  PubMed  Google Scholar 

  8. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556. https://doi.org/10.1084/jem.182.5.1545

    Article  CAS  PubMed  Google Scholar 

  9. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C (1995) A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51. https://doi.org/10.1016/0022-1759(95)00072-I

    Article  CAS  PubMed  Google Scholar 

  10. Casciola-Rosen L, Rosen A, Petri M, Schlissel M (1996) Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci U S A 93(4):1624–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Engeland M, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1996) A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24(2):131–139. https://doi.org/10.1002/(sici)1097-0320(19960601)24:2<131::aid-cyto5>3.0.co;2-m

    Article  PubMed  Google Scholar 

  12. Samejima K, Earnshaw WC (2005) Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 6(9):677–688

    Article  CAS  PubMed  Google Scholar 

  13. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501. https://doi.org/10.1083/jcb.119.3.493

    Article  CAS  PubMed  Google Scholar 

  14. Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells. Mol Cell 14(3):277–287. https://doi.org/10.1016/s1097-2765(04)00237-0

    Article  CAS  PubMed  Google Scholar 

  15. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316. https://doi.org/10.1126/science.281.5381.1312

    Article  CAS  PubMed  Google Scholar 

  16. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T-T, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376(6535):37–43

    Article  CAS  PubMed  Google Scholar 

  17. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269(49):30761–30764

    CAS  PubMed  Google Scholar 

  18. Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63(11):2705–2715

    CAS  PubMed  Google Scholar 

  19. Yaglom JA, Gabai VL, Sherman MY (2007) High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res 67(5):2373–2381. https://doi.org/10.1158/0008-5472.CAN-06-3796

    Article  CAS  PubMed  Google Scholar 

  20. Meng L, Hunt C, Yaglom JA, Gabai VL, Sherman MY (2011) Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 30(25):2836–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano E, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roninson IB (2002) Tumor senescence as a determinant of drug response in vivo. Drug Resist Updates 5(5):204–208

    Article  CAS  Google Scholar 

  23. Roninson IB, Broude EV, Chang B-D (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updates 4(5):303–313

    Article  CAS  Google Scholar 

  24. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775(1):5–20

    CAS  PubMed  Google Scholar 

  25. Rossi A, Ciafrè S, Balsamo M, Pierimarchi P, Santoro MG (2006) Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer. Cancer Res 66(15):7678–7685. https://doi.org/10.1158/0008-5472.can-05-4282

    Article  CAS  PubMed  Google Scholar 

  26. Kabakov AE, Kudryavtsev VA, Gabai VL (2010) Hsp90 inhibitors as promising agents for radiotherapy. J Mol Med (Berl) 88(3):241–247. https://doi.org/10.1007/s00109-009-0562-0

    Article  CAS  Google Scholar 

  27. Westerheide SD, Kawahara TLA, Orton K, Morimoto RI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281(14):9616–9622. https://doi.org/10.1074/jbc.M512044200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander E. Kabakov or Vladimir L. Gabai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kabakov, A.E., Gabai, V.L. (2018). Cell Death and Survival Assays. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics